MBI-Mitarbeiter - Persönliche Daten


In contemporary ultrafast science one of the main challenges is the energy and average power scaling of few-cycle pulse generation, which can extend the scope of ultrafast experiments. Basically, there are two different approaches for the generation of few-cycle drivers: one is based on traditional ultrafast lasers, most frequently on Ti:sapphire basis. However, the available gain bandwidth of laser media poses a severe limitation on the achievable minimal pulse duration, preventing the direct amplification of high-energy few-cycle pulses. In order to overcome this limitation the amplified pulses are spectrally broadened by nonlinear optical effects and subsequently compressed by chirp compensation. Although today's laser technology is capable of delivering tens of millijoules of pulse energy at multi-kHz repetition rates, the pulse compression stage has been limiting the achievable energy of few-cycle pulses. In the last years in close cooperation with Laser-Laboratorium Göttingen e.V. we have been focusing on the energy scalability of hollow-core fiber (HCF) compressors, the most widely used devices for spectral broadening of energetic pulses. For this purpose we introduced the stretched flexible HCF allowing free length scalability, which plays a key role in energy scaling. Based on our HCF technology recently we reached the TW power level at sub-2-cycle duration.

The other approach for high-energy few-cycle pulse generation is based on optical parametric amplification, where the amplification bandwidth is only limited by the phase matching condition. In this way direct amplification of few-cycle pulses is achievable. Currently we are working on a high-energy 100Hz few-cycle OPCPA system in the near-IR spectral range based on in-house pump laser development. Our objective is to exploit the potentials of both competing technologies in order to produce few cycle driver pulses well beyond 10mJ energy.

Another important aspect of ultrafast technology is pulse characterization, which is inevitable for successful light source development. In the last years we developed a number of frequency resolved optical gating (FROG) setups optimized for few-cycle pulse characterization, while currently we are investigating the dispersion scan (d-scan) technique.

Curriculum vitae

04/2016 - present: Staff scientist, Max Born Institute, Berlin, Germany

04/2012 - 03/2016: Research fellow 20%, Laser-Laboratorium Göttingen e.V., Germany

10/2011 - 03/2016: Post-doctoral researcher 80%, Intitute of Quantum Optics, Leibniz Universität Hannover, Germany

10/2004 - 09/2011: Research fellow, Laser-Laboratorium Göttingen e.V., Germany

09/2000 - 09/2004: R&D scientist, Lambda Physik AG, Göttingen, Germany

06/2000: PhD in Physics (summa cum laude) Thesis: "Optimization of high intensity KrF lasers" University of Szeged, Hungary, Prof. Dr. Sándor Szatmári

07/1997 - 08/2000: Assistant researcher, University of Szeged, Hungary

09/1994 - 06/1997: PhD student, Attila József University Szeged, Hungary

06/1994: MS degree in physics (with honour) Thesis: "Development of symmetry breaking during laser-induced oxidation", Attila József University Szeged, Hungary, Prof. Dr. László Nánai

09/1989 - 06/1994: Physics studies, Attila József University Szeged, Hungary

Team Members

Martin Kretschmar Dr.

MBI Publikationen

  1. Full characterization of 8 fs deep UV pulses via a dispersion scan

    A. Tajalli, T. K. Kalousdian, M. Kretschmar, S. Kleinert, U. Morgner, T. Nagy

    Optics Letters 44 (2019) 2498/1-4
  2. Propagation effects in the characterization of 1.5-cycle pulses by XPW dispersion scan

    A.Tajalli, M. Ouillé, A. Vernier, F. Böhle, E. Escoto, S. Kleinert, R. Romero, J. Csontos, U. Morgner , G. Steinmeyer, H. M. Crespo , R. Lopez Martens, T. Nagy

    IEEE Journal of Selected Topics in Quantum Electronics 25 (2019) 5120407/1-7
  3. Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks

    S. Kleinert, A. Tajalli, T. Nagy, U. Morgner

    Optics Letters 44 (2019) 979-982
  4. Compression of picosecond pulses from a thin-disk laser to 30fs at 4W average power

    B.-H. Chen, M. Kretschmar, D. Ehberger, A. Blumenstein, P. Simon, P. Baum, T. Nagy

    Optics Express 26 (2018) 3861-3869
  5. Efficient middle-infrared generation in LiGaS2 by simultaneous spectral broadening and difference-frequency generation

    B.-H. Chen, T. Nagy, P. Baum

    Optics Letters 43 (2018) 1742-1745
  6. Resonant-plasmon-assisted subwavelength ablation by a femtosecond oscillator

    L. Shi, B. Iwan, Q. Ripault, J. R. C. Andrade, S. Han, H. Kim, W. Boutu, D. Franz, R. Nicolas, T. Heidenblut, C. Reinhardt, B. Bastiaens, T. Nagy, I. Babuskin, U. Morgner, S.-W. Kim, G. Steinmeyer, H. Merdji, M. Kovačev

    Physical Review Applied 9 (2018) 024001/1-9
  7. Advanced phase retrieval for dispersion scan: a comparative study

    E. Escoto, A. Tajalli, T. Nagy, G. Steinmeyer

    Journal of The Optical Society America B 35 (2018) 8-19
  8. Self-optimization of plasmonic nanoantennas in strong femtosecond fields

    L. Shi, B. Iwan, R. Nicolas, Q. Ripault, J. R. C. Andrade, S. Han, H. Kim, W. Boutu, D. Franz, T. Heidenblut, C. Reinhardt, B. Bastiaens, T. Nagy, I. Babushkin, U. Morgner, S.-W. Kim, G. Steinmeyer, H. Merdji, M. Kovacev

    Optica 4 (2017) 1038-1043
  9. A closer look at ultra-intense lasers

    T. Nagy, G. Steinmeyer

    Nature Photonics 10 (2016) 502-504
  10. Few-cycle optical pulse characterization via cross-polarized wave generation dispersion scan technique

    A. Tajalli, B. Chanteau, M. Kretschmar, H. G. Kurz, D. Zuber, M. Kovacev, U. Morgner, T. Nagy

    Optics Letters 41 (2016) 5246-5249

Andere Publikationen

  1. Revealing the Microscopic Real-Space Excursion of a Laser-Driven Electron
    H.G. Kurz, M. Kretschmar, T. Binhammer, T. Nagy, D. Ristau, M. Lein, U. Morgner, M. Kovacev
    Phys. Rev. X 6, 031029 (2016)
  2. Impact of spatial inhomogeneities on on-axis pulse reconstruction in femtosecond filaments
    C. Brée, M. Kretschmar, T. Nagy, H. G. Kurz, U. Morgner, and M. Kovačev
    J. Phys. B: At. Mol. Opt. Phys. 48, 094002 (2015)
  3. Direct observation of pulse dynamics and self-compression along a femtosecond filament
    M. Kretschmar, C. Brée, T. Nagy, A. Demircan, H. G. Kurz, U. Morgner, and M. Kovačev
    Opt. Express 22, 22905-22916 (2014)
  4. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers
    F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy
    Laser Phys. Lett. 11, 095401 (2014)
  5. Nano-antennae assisted emission of extreme ultraviolet radiation
    N. Pfullmann, M. Noack, J. Cardoso de Andrade, S. Rausch, T. Nagy, C. Reinhardt, V. Knittel, R. Bratschitsch, A. Leitenstorfer, D. Akemeier, A. Hütten, M. Kovacev, and U. Morgner
    Ann. Phys. 526, 119-134 (2014)
  6. Pulse characterization by THG d-scan in absorbing nonlinear media
    M. Hoffmann, T. Nagy, T. Willemsen, M. Jupé, D. Ristau, and U. Morgner
    Opt. Express 22, 5234-5240 (2014)
  7. Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation
    N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner
    New J. Phys. 15, 093027 (2013)
  8. Laser-induced condensation by ultrashort laser pulses at 248 nm
    P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, P. Simon, J. Kasparian, K. Weber, and J.-P. Wolf
    Appl. Phys. Lett. 102, 091112 (2013)
  9. Optimal pulse compression in long hollow fibers
    T. Nagy, V. Pervak, and P. Simon
    Opt. Lett. 36, 4422-4424 (2011)
  10. Generation of 200-mu J, sub-25-fs deep-UV pulses using a noble-gas-filled hollow fiber
    T. Nagy, and P. Simon
    Opt. Lett. 34, 2300-2302 (2009)
  11. Single-shot TG FROG for the characterization of ultrashort DUV pulses
    T. Nagy, and P. Simon
    Opt. Express 17, 8144-8151 (2009)
  12. Flexible hollow fiber for pulse compressors
    T. Nagy, M. Forster, and P. Simon
    Appl. Opt. 47, 3264-3268 (2008)
  13. Hollow-fiber pulse compressor for KrF lasers
    J. H. Klein-Wiele, T. Nagy, and P. Simon
    Appl. Phys. B 82, 567-570 (2006)
  14. Changes in DRIFT spectra of wood irradiated by UV laser as a function of energy
    G. Papp, E. Barta, E. Preklet, L. Tolvaj, O. Berkesi, T. Nagy, and S. Szatmári
    J. Photochem. Photobiol., A 173, 137-142 (2005)
  15. Changes in DRIFT spectra of softwood irradiated by UV laser as a function of energy
    E. Barta, G. Papp, E. Preklet, L. Tolvaj, O. Berkesi, T. Nagy, and S. Szatmári
    Acta Silv. Lign. Hung. 1, 83-91 (2005)
  16. Effect of UV-laser irradiation on structural changes of maplewood lignin-polysaccharide comlpex
    B. Kosikova, V. Sasinkova, L. Tolvaj, G. Papp, S. Szatmári, and T. Nagy
    Drev. Vysk. 46, 11-18 (2001)
  17. Spectral development of short pulses in KrF gain modules
    T. Nagy, P. Simon, and S. Szatmari
    Appl. Phys. B 71, 495-501 (2000)
  18. Spectral evolution of short pulses in KrF amplifiers
    T. Nagy, P. Simon, and S. Szatmari
    Laser Phys. 10, 387-390 (2000)
  19. Photodegradation of leaf-woods caused by 248.5 nm laser
    E. Barta, L. Tolvaj, T. Nagy, S. Szatmári, O. Berkesi, and G. Papp
    Drev. Vysk. 44, 13-19 (1999)
  20. Harmonic generation in plasmas of different density gradients
    I. B. Foldes, J. S. Bakos, Z. Bakonyi, T. Nagy, and S. Szatmari
    Phys. Lett. A 258, 312-316 (1999)
  21. Wood degradation caused by UV-laser of 248 nm wavelength
    E. Barta, L. Tolvaj, G. Papp, T. Nagy, S. Szatmári, and O. Berkesi
    Holz Roh Werkst. 56, 318-318 (1998)
  22. Nonlinear spectral filtering of femtosecond pulses
    P. Simon, T. Nagy, and S. Szatmari
    Opt. Commun. 145, 155-158 (1998)
  23. Optimization of the output beam homogeneity of short-pulse KrF amplifiers
    M. Feuerhake, P. Simon, G. Almasi, T. Nagy, and S. Szatmari
    Appl. Opt. 36, 4094-4098 (1997)
  24. Harmonic generation in a UV laser plasma
    I. B. Foldes, J. S. Bakos, G. Veres, Z. Bakonyi, T. Nagy, and S. Szatmari
    IEEE J. Sel. Top. Quantum Electron. 2, 776-781 (1996)