MBI-Mitarbeiter - Persönliche Daten

Research

In contemporary ultrafast science one of the main challenges is the energy and average power scaling of few-cycle pulse generation, which can extend the scope of ultrafast experiments. Basically, there are two different approaches for the generation of few-cycle drivers: one is based on traditional ultrafast lasers, most frequently on Ti:sapphire basis. However, the available gain bandwidth of laser media poses a severe limitation on the achievable minimal pulse duration, preventing the direct amplification of high-energy few-cycle pulses. In order to overcome this limitation the amplified pulses are spectrally broadened by nonlinear optical effects and subsequently compressed by chirp compensation. Although today's laser technology is capable of delivering tens of millijoules of pulse energy at multi-kHz repetition rates, the pulse compression stage has been limiting the achievable energy of few-cycle pulses. In the last years in close cooperation with Laser-Laboratorium Göttingen e.V. we have been focusing on the energy scalability of hollow-core fiber (HCF) compressors, the most widely used devices for spectral broadening of energetic pulses. For this purpose we introduced the stretched flexible HCF allowing free length scalability, which plays a key role in energy scaling. Based on our HCF technology recently we reached the TW power level at sub-2-cycle duration.

The other approach for high-energy few-cycle pulse generation is based on optical parametric amplification, where the amplification bandwidth is only limited by the phase matching condition. In this way direct amplification of few-cycle pulses is achievable. Currently we are working on a high-energy 100Hz few-cycle OPCPA system in the near-IR spectral range based on in-house pump laser development. Our objective is to exploit the potentials of both competing technologies in order to produce few cycle driver pulses well beyond 10mJ energy.

Another important aspect of ultrafast technology is pulse characterization, which is inevitable for successful light source development. In the last years we developed a number of frequency resolved optical gating (FROG) setups optimized for few-cycle pulse characterization, while currently we are investigating the dispersion scan (d-scan) technique.

Curriculum vitae

04/2016 - presentStaff scientist, Max Born Institute, Berlin, Germany
04/2012 - 03/2016Research fellow 20%, Laser-Laboratorium Göttingen e.V., Germany
10/2011 - 03/2016Post-doctoral researcher 80%, Intitute of Quantum Optics, Leibniz Universität Hannover, Germany
10/2004 - 09/2011Research fellow, Laser-Laboratorium Göttingen e.V., Germany
09/2000 - 09/2004R&D scientist, Lambda Physik AG, Göttingen, Germany
06/2000PhD in Physics (summa cum laude) Thesis: "Optimization of high intensity KrF lasers" University of Szeged, Hungary, Prof. Dr. Sándor Szatmári
07/1997 - 08/2000Assistant researcher, University of Szeged, Hungary
09/1994 - 06/1997PhD student, Attila József University Szeged, Hungary
06/1994MS degree in physics (with honour) Thesis: "Development of symmetry breaking during laser-induced oxidation", Attila József University Szeged, Hungary, Prof. Dr. László Nánai
09/1989 - 06/1994Physics studies, Attila József University Szeged, Hungary

Honors and Awards

2018OSA Senior Member

Professional Service

General Chair, High-Intensity Lasers and High-Field Phenomena (HILAS), Strasbourg, 2018

Program Chair, High-Intensity Lasers and High-Field Phenomena (HILAS), Long Beach, 2016

 

Team Members

Martin Kretschmar Dr.

MBI Publikationen

  1. Propagation-assisted generation of intense few-femtosecond high-harmonic pulses

    B. Major, M. Kretschmar, O. Ghafur, A. Hoffmann, K. Kovács, K. Varjú, B. Senfftleben, J. Tümmler, I. Will, T. Nagy, D. Rupp, M. J. J. Vrakking, V. Tosa, B. Schütte

    Journal of Physics: Photonics 2 (2020) 034002/1-10
  2. Highly nonlinear ionization of atoms induced by intense high-harmonic pulses

    B. Senfftleben, M. Kretschmar, A. Hoffmann, M. Sauppe, J. Tümmler, I. Will, T. Nagy, M. J. J. Vrakking, D. Rupp, B. Schütte

    Journal of Physics: Photonics 2 (2020) 034001/1-12
  3. Relativistic-intensity near-single-cycle light waveforms at kHz repetition rate

    M. Ouillé, A. Vernier, F. Böhle, M. Bocoum, A. Jullien, M. Lozano, J.-P. Rousseau, Z. Cheng, D. Gustas, A. Blumenstein, P. Simon, S. Haessler, J. Faure, T. Nagy, R. Lopez-Martens

    Light: Science & Applications 9 (2020) 47/1-9
  4. Generation of above-terawatt 1.5-cycle visible pulses at 1 kHz by post-compression in a hollow fiber

    T. Nagy, M. Kretschmar, M. J. J. Vrakking, A. Rouzée

    Optics Letters 45 (2020) 3313-3317
  5. Propagation effects in the characterization of 1.5-cycle pulses by XPW dispersion scan

    A.Tajalli, M. Ouillé, A. Vernier, F. Böhle, E. Escoto, S. Kleinert, R. Romero, J. Csontos, U. Morgner , G. Steinmeyer, H. M. Crespo , R. Lopez Martens, T. Nagy

    IEEE Journal of Selected Topics in Quantum Electronics 25 (2019) 5120407/1-7
  6. Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks

    S. Kleinert, A. Tajalli, T. Nagy, U. Morgner

    Optics Letters 44 (2019) 979-982
  7. Full characterization of 8 fs deep UV pulses via a dispersion scan

    A. Tajalli, T. K. Kalousdian, M. Kretschmar, S. Kleinert, U. Morgner, T. Nagy

    Optics Letters 44 (2019) 2498/1-4
  8. Generation of few-cycle laser pulses with high temporal contrast via nonlinear elliptical polarisation rotation in a hollow fibre compressor

    N. G. Khodakovskiy, M. P. Kalashnikov, V. Pajer, A. Blumenstein, P. Simon, M. M. Toktamis, M. Lozano, B. Mercier, Z. Cheng, T. Nagy, R. Lopez-Martens

    Laser Physics Letters 16 (2019) 095001/1-5
  9. Efficient generation of broadband MIR radiation by difference–frequency generation in LiGaS2

    B.-H. Chen, T. Nagy, P. Baum

    Ultrafast Phenomena XXI 205 EJP Web of Conferences (2019) 01019/1-3
  10. Generation of three-cycle multi-millijoule laser pulses at 318 W average power

    T. Nagy, S. Hädrich , P. Simon, A. Blumenstein , N. Walther , R. Klas, J. Buldt , H. Stark, S. Breitkopf, P. Jójárt , I. Seres, Z. Várallyay , T. Eidam , J. Limpert

    Optica 6 (2019) 1423-1424

Andere Publikationen

1. Revealing the Microscopic Real-Space Excursion of a Laser-Driven Electron
H.G. Kurz, M. Kretschmar, T. Binhammer, T. Nagy, D. Ristau, M. Lein, U. Morgner, M. Kovacev
Phys. Rev. X 6, 031029 (2016)

2. Impact of spatial inhomogeneities on on-axis pulse reconstruction in femtosecond filaments
C. Brée, M. Kretschmar, T. Nagy, H. G. Kurz, U. Morgner, and M. Kovačev
J. Phys. B: At. Mol. Opt. Phys. 48, 094002 (2015)

3. Direct observation of pulse dynamics and self-compression along a femtosecond filament
M. Kretschmar, C. Brée, T. Nagy, A. Demircan, H. G. Kurz, U. Morgner, and M. Kovačev
Opt. Express 22, 22905-22916 (2014)

4. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers
F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda, R. Romero, H. Crespo, U. Morgner, P. Simon, R. Lopez-Martens, and T. Nagy
Laser Phys. Lett. 11, 095401 (2014)

5. Nano-antennae assisted emission of extreme ultraviolet radiation
N. Pfullmann, M. Noack, J. Cardoso de Andrade, S. Rausch, T. Nagy, C. Reinhardt, V. Knittel, R. Bratschitsch, A. Leitenstorfer, D. Akemeier, A. Hütten, M. Kovacev, and U. Morgner
Ann. Phys. 526, 119-134 (2014)

6. Pulse characterization by THG d-scan in absorbing nonlinear media
M. Hoffmann, T. Nagy, T. Willemsen, M. Jupé, D. Ristau, and U. Morgner
Opt. Express 22, 5234-5240 (2014)

7. Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation
N. Pfullmann, C. Waltermann, M. Noack, S. Rausch, T. Nagy, C. Reinhardt, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner
New J. Phys. 15, 093027 (2013)

8. Laser-induced condensation by ultrashort laser pulses at 248 nm
P. Joly, M. Petrarca, A. Vogel, T. Pohl, T. Nagy, Q. Jusforgues, P. Simon, J. Kasparian, K. Weber, and J.-P. Wolf
Appl. Phys. Lett. 102, 091112 (2013)

9. Optimal pulse compression in long hollow fibers
T. Nagy
, V. Pervak, and P. Simon
Opt. Lett. 36, 4422-4424 (2011)

10. Generation of 200-mu J, sub-25-fs deep-UV pulses using a noble-gas-filled hollow fiber
T. Nagy
, and P. Simon
Opt. Lett. 34, 2300-2302 (2009)

11. Single-shot TG FROG for the characterization of ultrashort DUV pulses
T. Nagy
, and P. Simon
Opt. Express 17, 8144-8151 (2009)

12. Flexible hollow fiber for pulse compressors
T. Nagy
, M. Forster, and P. Simon
Appl. Opt. 47, 3264-3268 (2008)

13. Hollow-fiber pulse compressor for KrF lasers
J. H. Klein-Wiele, T. Nagy, and P. Simon
Appl. Phys. B 82, 567-570 (2006)

14. Changes in DRIFT spectra of wood irradiated by UV laser as a function of energy
G. Papp, E. Barta, E. Preklet, L. Tolvaj, O. Berkesi, T. Nagy, and S. Szatmári
J. Photochem. Photobiol., A 173, 137-142 (2005)

15. Changes in DRIFT spectra of softwood irradiated by UV laser as a function of energy
E. Barta, G. Papp, E. Preklet, L. Tolvaj, O. Berkesi, T. Nagy, and S. Szatmári
Acta Silv. Lign. Hung. 1, 83-91 (2005)

16. Sub-0.25-pm 50-W amplified excimer laser system for 193-nm lithography
S. Govorkov, A. Wiessner, G. Hua, T. Misuryaev, A. Knysh, S. Spratte, P. Lokai, T. Nagy, I. Bragin, A. Targsdorf, T. Schroeder, H.‑S. Albrecht, R. Desor, T. Schmidt, and R. Paetzel
Proc. SPIE 5377, 1787-1796 (2004)

17. High-power excimer lasers for 157-nm lithography
S. Spratte, F. Voss, I. Bragin, E. Bergmann, N. Niemoeller, T. Nagy, U. Rebhan, A. Targsdorf, R. Paetzel, S. Govorkov, and G. Hua
Proc. SPIE 5040, 1344-1351 (2003)

18. High-Power High-Repetition Rate F2-Lasers for 157 nm Lithography
K. Vogler, I. Klaft, F. Voss, I. Bragin, E. Bergmann, T. Nagy, N. Niemoeller, S. Spratte, R. Paetzel, G. Hua, and S. Govorkov
Proc. SPIE 4691, 660-670 (2002)

19. Advanced F2-lasers for 157 nm Lithography
K. Vogler, I. Klaft, F. Voss, I. Bragin, E. Bergmann, T. Nagy, N. Niemoeller, R. Paetzel, S. Govorkov, and G. Hua
Proc. SPIE 4346, 1175-1182 (2001)

20. Effect of UV-laser irradiation on structural changes of maplewood lignin-polysaccharide comlpex
B. Kosikova, V. Sasinkova, L. Tolvaj, G. Papp, S. Szatmári, and T. Nagy
Drev. Vysk. 46, 11-18 (2001)

21. Spectral development of short pulses in KrF gain modules
T. Nagy
, P. Simon, and S. Szatmari
Appl. Phys. B 71, 495-501 (2000)

22. Spectral evolution of short pulses in KrF amplifiers
T. Nagy
, P. Simon, and S. Szatmari
Laser Phys. 10, 387-390 (2000)

23. Photodegradation of leaf-woods caused by 248.5 nm laser
E. Barta, L. Tolvaj, T. Nagy, S. Szatmári, O. Berkesi, and G. Papp
Drev. Vysk. 44, 13-19 (1999)

24. Harmonic generation in plasmas of different density gradients
I. B. Foldes, J. S. Bakos, Z. Bakonyi, T. Nagy, and S. Szatmari
Phys. Lett. A 258, 312-316 (1999)

25. Wood degradation caused by UV-laser of 248 nm wavelength
E. Barta, L. Tolvaj, G. Papp, T. Nagy, S. Szatmári, and O. Berkesi
Holz Roh Werkst. 56, 318-318 (1998)

26. Nonlinear spectral filtering of femtosecond pulses
P. Simon, T. Nagy, and S. Szatmari
Opt. Commun. 145, 155-158 (1998)

27. Optimization of the output beam homogeneity of short-pulse KrF amplifiers
M. Feuerhake, P. Simon, G. Almasi, T. Nagy, and S. Szatmari
Appl. Opt. 36, 4094-4098 (1997)

28. Harmonic generation in a UV laser plasma
I. B. Foldes, J. S. Bakos, G. Veres, Z. Bakonyi, T. Nagy, and S. Szatmari
IEEE J. Sel. Top. Quantum Electron. 2, 776-781 (1996)