Ultrastark, ultraschnell und lokal: Wasser induziert elektrische Felder an der DNA-Oberfläche

Struktur und Dynamik der DNA-Doppelhelix werden entscheidend durch die umgebende Wasserhülle beeinflusst. Neue Ultrakurzzeit-Experimente zeigen, dass die beiden ersten Wasserschichten extrem starke elektrische Felder von bis zu 100 Megavolt/cm erzeugen, die auf der Femtosekunden-Zeitskala fluktuieren und auf eine Reichweite von etwa 1 nm begrenzt sind.

Als Träger der Erbinformation weisen DNA-Moleküle in ihrer natürlichen wässrigen Umgebung eine Doppelhelixstruktur auf, die aus zwei gegenläufigen gewundenen Strängen von Nukleotiden aufgebaut ist (Abb. 1A). Eine alternierende Anordnung negativ geladener Phosphatgruppen und polarer Zuckereinheiten bildet das Rückgrat der Doppelhelix welches direkt mit den umgebenden Wassermolekülen wechselwirkt. Die insgesamt negative Ladung der Doppelhelix wird durch positiv geladene Gegenionen, z.B. Natriumionen kompensiert, die sich in wässriger Umgebung dicht an der Helixoberfläche befinden. Die Wechselwirkung von elektrischen Dipolmomenten der Wassermoleküle mit den Ladungen der Gegenionen und Phosphatgruppen sowie mit den polaren Einheiten erzeugt elektrische Felder an der DNA-Oberfläche, deren Eigenschaften trotz intensiver Forschung bis heute kontrovers diskutiert werden. Dies liegt wesentlich an der strukturellen Komplexität dieses Vielteilchensystems und seinen thermischen Fluktuationen auf kurzen Zeitskalen.

Abb. 1: (A) Oberfläche einer DNA-Doppelhelix. Der Verlauf der Helixstränge ist an den Sauerstoffatomen der Phosphatgruppen (rot) zu erkennen. In blau sind Gegenionen gezeigt, die kleinen gewinkelten Strukturen sind Wassermoleküle. (B) Zweidimensionales Infrarotspektrum der Schwingungen des DNA-Rückgrats. Als Funktion der Anrege- und der Detektionsfrequenz sind nichtlineare Schwingungssignale gezeigt. Die Linienform der Resonanzen auf der Diagonalen (gleiche Anrege- und Detektionsfrequenz) wird direkt durch fluktuierende elektrische Felder beeinflusst, die Signale ausserhalb der Diagonale werden durch Kopplungen zwischen den Schwingungen verursacht. (C) Verlauf des zeitlich gemittelten elektrischen Feldes (blau) als Funktion des Abstandes von der DNA-Oberfläche. Wassermoleküle in der ersten Schicht (um 0.4 nm) erzeugen ca. 70% des Gesamtfeldes, die zweite Wasserschicht trägt ca. 20% bei.

Wissenschaftlern des Max-Born-Instituts in Berlin ist es jetzt erstmals gelungen, Stärke, Reichweite und ultraschnelle Dynamik der an einer nativen DNA-Oberfläche auftretenden elektrischen Felder quantitativ zu bestimmen. Wie sie in der Zeitschrift Journal of Physical Chemistry Letters berichten, dienen Schwingungen im Rückgrat der Doppelhelixstruktur von natürlicher Salmon DNA als Sonden um die elektrischen Wechselwirkungen räumlich und zeitlich abzubilden. Die elektrischen Felder an der DNA-Oberfläche beeinflussen hierbei direkt die Form und Dynamik der Schwingungsresonanzen, welche mit einem speziellen Verfahren, der sog. zweidimensionalen Infrarotspektroskopie, in Echtzeit auf einer Zeitskala im Femtosekundenbereich (1 fs = 10-15 s) aufgezeichnet werden (Abb. 1B). Um unterschiedliche Beiträge zu den fluktuierenden elektrischen Feldern an der DNA-Oberfläche zu unterscheiden, wurde der Wassergehalt der DNA-Proben systematisch variiert.

Die Experimente und umfangreiche theoretische Analysen zeigen, dass Wassermoleküle in den ersten beiden Schichten, die die DNA umgeben, ein extrem starkes elektrisches Feld erzeugen, während ionische Gruppen und weiter aussen liegende Wassermoleküle nur eine untergeordnete Rolle spielen. Die räumliche Reichweite des Feldes beträgt nur etwa 1 nm, bei einer Stärke von bis zu 100 MV/cm (100 Millionen Volt pro Zentimeter) wie in Abb. 1C dargestellt. Thermische Bewegungen der Wassermoleküle führen zu Feldfluktuationen von 25 MV/cm auf einer Zeitskala von 300 fs. Die Zeitskala der Fluktuationen zeigt, dass die Bewegung der Wassermoleküle durch die Kopplung an die strukturierte DNA-Oberfläche behindert und im Vergleich zu reinem Wasser verlangsamt wird. Diese neuen, erstmals quantitativen Befunde sind wichtig für das Verständnis der maßgeblichen Rolle von Wasser und seiner Dynamik an biologischen Grenzflächen, etwa geladenen Zellmembranen und Oberflächen von Proteinen.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF