Synchrone Bewegung von Elektronen in benachbarten Molekülen - ein ultraschneller Röntgenfilm über Metallkomplexe in einem Kristall

Mittels Femtosekunden-Röntgenbeugung konnten Forscher des Max-Born-Instituts in Berlin (Germany) und der Ecole Polytechnique Federale de Lausanne (Schweiz) erstmals eine extrem schnelle, kollektive Verschiebung von Elektronen zwischen ~100 Molekülionen beobachten, nachdem sie ein einzelnes Elektron in einem Kristall aus Übergangsmetallkomplexen angeregt haben.

In der Photochemie und molekularen Photovoltaik sind sogenannte Übergangsmetallkomplexe ein weitverbreitetes System. Es besteht aus einem zentralen Metallion, an das eine Gruppe von meist organischen Liganden gebunden ist. Diese Materialen zeigen eine starke Absorption von sichtbarem oder ultraviolettem Licht - eine attraktive Eigenschaft für Anwendungen als primäre Lichtabsorber in molekularen Solarzellen oder in der molekularen Optoelektronik. Nach der Absorption von Licht beobachtet man eine extrem schnelle Verlagerung der Elektronen von dem Metallion auf die Liganden. Dieser Mechanismus ist wesentlich um eine elektrische Spannung zu erzeugen. Da in allen Anwendungen Festkörpermaterialien bevorzugt werden, sind in diesen die Übergangsmetallkomplexe sehr dicht gepackt, was zu einer starken Wechselwirkung untereinander führt. Bislang hatte man überhaupt keine Information über den Einfluß dieser gegenseitigen Wechselwirkung auf die ultraschnelle Elektronenbewegung nach der Lichtabsorption.

Abb. 1 Kugel- und Stäbchenmodell des Übergangsmetallkomplexes Eisen(II)-tris-Bipyridin [Fe(bpy)3]2+. Eisenatome (Fe) sind braune, Stickstoff (N) blaue, Kohlenstoff (C) graue und Wasserstoff (H) weiße Kugeln. Die sechs Stickstoffatome befinden sich an den Ecken eines um das Fe-Atom zentrierten Oktaeders. Die Ebenen der 3 Bipyridin Untereinheiten (N2C10H8) stehen jeweils senkrecht aufeinander.

Um solch eine ultraschnelle Elektronenbewegung direkt in Raum und Zeit zu verfolgen, benötigt man experimentelle Methoden, die die Position von Elektronen in einem Kristall mit einer Präzision von (0.1 nm =10-10m), etwa der Abstand zwischen benachbarten Atomen, auf einer sub-100 fs Zeitskala (1 fs = 10-15s) bestimmen können. Eine solche Abbildung ist möglich, wenn man ultrakurze Röngtenblitze an den Elektronen streut, da das Beugungsmuster die Information über die räumliche Anordnung der Elektronen zu Verfügung stellt. Die Bewegung der Elektronen wird mittels eines kurzen, optischen Lichtimpulses ausgelöst, welcher ein einzelnes Elektron an einem individuellen Metallkomplex anregt. In der akutellen Ausgabe der Fachzeitschrift Journal of Chemical Physics 138, 144504 (2013) (free download), berichten Benjamin Freyer, Flavio Zamponi, Vincent Juve, Johannes Stingl, Michael Wörner, Thomas Elsässer und Majed Chergui über die erste in-situ Röntgenabbildung der Elektron- und Atom-Bewegungen, die durch solch eine Elektronentransfer-Reaktion ausgelöst wurden. Sie zeigen für das Prototypmaterial [Fe(bpy)3]2+(PF6-)2, zeitabhängige "Elektronendichte-Landkarten", welche aus einzelnen Schnappschüssen mittels 100 fs kurzer Röntgenblitze gewonnen wurden. Eine Serie von Schnappschüssen für verschiedene Momente, d.h. vor, während und nach der Elektronentransfer-Reaktion, läßt sich zu einem ultraschnellen Röntgenfilm über Elektron- und Atom-Bewegungen zusammenfügen.

Abb. 2 Die Gegenionen in unserem Kristall sind jeweils zwei Hexa-fluoro-phosphat (PF6-) Ionen [Phosphor (P), Fluor (F)]. Die sechs F-Atome sind ebenfalls an den Ecken eines Oktaeders um das zentrale P-Atom angeordnet. Wir zeigen hier eine 3-dimensionale Oberfläche konstanter Elektronendichte ρ(r,t) = ρC = konst. Der Wert für ρC wurde so gewählt, dass man höchst empfindlich die Bewegung der Elektronen auf dem (PF6-) Anion verfolgen kann. In dem beigefügten Röntgenfilm beobachtet man eine deutlichen Abfluss (d.h. Schrumpfen der Isoelektronendichte-Oberfläche) von Elektronen vom (PF6-) Anion nach der Lichtanregung. 

Abb. 3 Die 3-dimensionale Oberfläche konstanter Elektronendichte innerhalb der Einheitszelle des Kristalls zeigt die relative räumliche Anordnung der Eisenatome (Kugeln), Bipyridin-Liganden (Bretzel-artige Objekte) and (PF6-) Anionen (Oktaeder-förmige Sterne).

Zur großen Überraschung der Wissenschaftler zeigten die zeitabhängigen "Elektronendichte-Landkarten" nicht nur eine Verschiebung von Elektronen von den Eisenatomen zu den Bipyridin-Liganden, sondern auch - eine bislang unerwartetde - Verlagerung von Elektronen von den PF6- Anionen zu den Bipyridin-Liganden. Eine genaue Analyse der Röntgenschnappschüsse zeigt, dass der Elektronentransfer auf etwa 30 Metallkomplexen (mit jeweils 2 PF6- Anionen) um den direkt Licht-angeregten komplex herum stattfindet. Diese kollektive Antwort der Elektronen wird von den starken Coulomb-Kräften zwischen den unterschiedlichen Ionen hervorgerufen, welche eine Minimierung der gesamten elektro-statischen Energie des Kristalls anstreben. Solch ein Verhalten ist höchst willkommen für das Einsammeln von elektrischer Ladung in opto-elektronischen Bauelementen.

Abb. 4 Cartoon der kollektiven Ladungsverschiebung in [Fe(bpy)3]2+(PF6-)2, welche ungefähr 30 Metallkomplexe (und jeweils 2 Gegenionen) um den direkt lichtangeregten Komplex involviert. Blau: Reduktion der Elektronendichte, rot: erhöhte Elektronendichte.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF