Flexibilität und Ordnung - die Wechselwirkung zwischen Ribonukleinsäure und Wasser

Ribonukleinsäure (RNA) spielt eine Schlüsselrolle für biochemische Prozesse, die auf zellulärer Ebene in einer wässrigen Umgebung ablaufen. Mechanismen und Dynamik der Wechselwirkung zwischen RNA und Wasser wurden jetzt durch Schwingungsspektroskopie im Ultrakurzzeitbereich aufgeklärt und theoretisch analysiert.

Ribonukleinsäure (RNA) ist ein elementarer Bestandteil biologischer Zellen. Während Desoxyribonukleinsäure (DNA) das Speichermedium der Erbinformation darstellt, verfügt RNA über eine vielfach komplexere biochemische Funktionalität. Dies beinhaltet die Informationsübertragung in Form von mRNA, RNA-vermittelte katalytische Aktivität in Ribosomen bis hin zur Speicherung von Erbinformation in Viren. Chemisch besteht RNA aus einer Abfolge organischer Nukleobasenmoleküle, die durch ein sog. Rückgrat aus Phosphat- und Zuckergruppen zusammengehalten werden. Ein derartiger Molekülstrang kann einzeln oder gepaart in Form einer Doppelhelix vorliegen. Beide makromolekularen Formen sind in eine Wasserhülle eingebettet; die Sauerstoffatome der Phosphat- und Zuckergruppen stellen ausgezeichnete Kontaktstellen für Wassermoleküle dar. Die Struktur der Wasserhülle weist hierbei Fluktuationen in einem Zeitbereich von Bruchteilen einer Pikosekunde (1 ps = 10-12 s = 1 Millionstel einer Millionstel Sekunde) auf. Die Wechselwirkung zwischen RNA und Wasser und ihre Rolle für die Ausbildung dreidimensionaler RNA-Strukturen sind erst in Ansätzen verstanden und experimentell schwer zugänglich.

Abb. 1: Links: Struktur der RNA-Doppelhelix, blaue Sphären stellen Natrium-Gegenionen dar. Rechts: Vergrößerung des aus Phosphat- und Zuckergruppen bestehenden RNA-Rückgrats, verbrückende Wassermoleküle sind schematisch dargestellt. Die Schwingungen des RNA-Rückgrats dienen als empfindliche Sonden, um den Einfluss unmittelbar benachbarter Wassermoleküle auf Struktur und Dynamik der RNA in Echtzeit zu verfolgen.

Forscher am Max-Born-Institut haben jetzt mit einer neuen experimentellen Methode die Wechselwirkung zwischen RNA und der umgebenden Wasserhülle in Echtzeit verfolgt. Dabei dienen Schwingungen des RNA-Rückgrats als empfindliche Sonden für den Einfluss der unmittelbar benachbarten Wassermoleküle auf Struktur und Dynamik der RNA. Mit der sog. zweidimensionalen Schwingungsspektroskopie lassen sich die zeitliche Entwicklung von Schwingungsanregungen aufzeichnen und molekulare Wechselwirkungen innerhalb der RNA wie auch zwischen RNA und Wasser bestimmen. Dabei zeigt sich, dass Wassermoleküle an der RNA-Oberfläche ultraschnelle Kippbewegungen in Bruchteilen einer Pikosekunde ausführen, ihre lokale räumliche Anordnung jedoch für einen Zeitraum von mehr als 10 Pikosekunden beibehalten. Dieses Verhalten weicht von der Dynamik des reinen Wassers deutlich ab und ist stark durch die räumlichen Randbedingungen an der RNA-Oberfläche beeinflusst. Einzelne Wassermoleküle verbinden hierbei benachbarte Phosphatgruppen und bilden eine teilweise geordnete Struktur, die durch Kopplung an die Zuckereinheiten vermittelt wird.

Abb. 2: Zweidimensionale Schwingungsspektren von RNA (oben) und DNA (unten) im Frequenzbereich der Zucker-Phosphat-Schwingungen des Rückgrats. Das RNA Spektrum weist zusätzliche Banden (Konturen) entlang der Frequenzdiagonalen ν13 und eine komplexere Verteilung von Außerdiagonalbeiträgen auf. Neben den Frequenzpositionen geben die Linienformen der einzelnen Banden (Konturen) Aufschluss über Details der Wechselwirkung mit benachbarten Wassermolekülen.

Die sich bewegenden Wassermoleküle erzeugen eine elektrische Kraft, mit der die Wasserfluktuationen auf Schwingungen der RNA übertragen werden. Die Schwingungen des RNA-Rückgrats zeigen ein unterschiedliches dynamisches Verhalten, das von der lokalen Wasserumgebung bestimmt wird und deren Heterogenität widerspiegelt. RNA-Schwingungen koppeln ihrerseits aneinander, sie tauschen Energie untereinander und mit der Wasserhülle aus. Die damit verbundene ultraschnelle Umverteilung von Überschussenergie verhindert ein lokales Überhitzen der makromolekularen Struktur. Dieses komplexe Szenario wurde durch detaillierte theoretische Berechnungen und Simulationen analysiert, mit denen u.a. die Schwingungsbewegungen des RNA-Rückgrats erstmals komplett und quantitativ identifiziert wurden. Vergleichende Experimente an DNA enthüllen Gemeinsamkeiten, aber auch charakteristische Unterschiede im Verhalten dieser beiden elementaren Biomoleküle, wobei sich RNA durch eine strukturiertere Anordnung der umgebenden Wasserhülle auszeichnet. Die Ergebnisse der Studie demonstrieren das vielfältige Potential von nicht-invasiver zeitaufgelöster Schwingungsspektroskopie, um das Wechselspiel von Struktur und Dynamik auf molekularen Längen- und Zeitskalen in komplexen biomolekularen Systemen zu entschlüsseln.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF