Die Quantenschaukel - ein Pendel das gleichzeitig vor und zurück schwingt

Ultrakurze Terahertz-Impulse regen Zwei-Quanten-Oszillationen von Atomen in einem Halbleiterkristall an. Die von den bewegten Atomen abgestrahlten Terahertz-Wellen werden mittels einer neuen zeitaufgelösten Technik analysiert und zeigen den nicht-klassischen Charakter der Atombewegungen von großer Amplitude.

Das klassische Pendel einer Standuhr schwingt mit einer wohl definierten Auslenkung und Geschwindigkeit zu jedem Zeitpunkt vor und zurück. Während dieser Schwingung bleibt seine Gesamtenergie konstant, welche durch eine beliebig wählbare Anfangsauslenkung vorgegeben ist. Oszillatoren in der Quantenwelt der Atome und Moleküle verhalten sich völlig anders: Deren Energie hat diskrete Werte entsprechend der unterschiedlichen Quantenzustände eines Oszillators. Der "verschmierte" Ort eines Atoms in einem Energieeigenzustand des Oszillators wird mit Hilfe der Wellenfunktion beschrieben, deren Amplitude keinerlei Schwingungen aufweist.

Fig. 1 Experimentell gemessene Kurven: (a) Zwei-dimensionaler (2D) scan der Summe der elektrischen Felder E(τ,t) der drei treibenden THz-Impulse A, B und C als Funktion der Kohärenzzeit τ und der Realzeit t. Das Konturdiagramm ist rot gefärbt für positive elektrische Felder und blau gefärbt für negative elektrische Felder. (b) 2D scan des von der Zwei-Phononen-Kohärenz im Halbleiter Indiumantimonid nichtlinear abgestrahlten, elektrischen Feldes ENL(τ,t) Die orange Linie zeigt die Mitte von THz-Impuls A. (c) Elektrische Feldtransiente ENL(0,t) gemessen für Kohärenzzeit τ=0.

 

Schwingungsbewegungen in der Quantenwelt erfordern eine Überlagerung unterschiedlicher Quantenzustände - sogenannte Kohärenzen oder Wellenpakete. Die Überlagerung zweier benachbarter Oszillatorzustände entspricht einer Ein-Quantenkohärenz, bei der die Atombewegung dem klassischen Pendel sehr ähnelt. Viel interessanter sind Zwei-Quantenkohärenzen, eine waschechte nicht-klassische Anregung, bei der ein Atom gleichzeitig an zwei verschiedenen Orten sein kann. Seine Geschwindigkeit verhält sich auch nicht-klassisch, was bedeutet, dass es sich zur selben Zeit von links nach rechts und von rechts nach links bewegt (siehe Movie). Solche Bewegungen existieren nur für sehr kurze Zeiten, weil die wohl definierte Überlagerung der Quantenzustände aufgrund der sogenannten Dekohärenz innerhalb weniger Pikosekunden (1 Pikosekunde = 10-12s) zerfällt. Solche Zwei-Phononen-Kohärenzen sind äußerst wichtig in dem neunen Forschungsgebiet der sogenannten Quanten-Phononik. Dort werden nicht-klassische Atombewegungen wie etwa "gequetschte" oder "verschränkte" Phononen untersucht. 

Movie: Veranschaulichung von nicht-klassischen Quantenkohärenzen in Materie. Die zwei Parabeln (scharze Kurven) zeigen die Potentialoberflächen von harmonischen Oszillatoren, die die Schwingungen von Atomen in einem Kristall um ihre Gleichgewichtslage repräsentieren - die sogenannten Phononen. Die blauen Kurven zeigen die Aufenthaltswahrscheinlichkeit der Atome an unterschiedlichen Orten im thermischen Gleichgewicht. Die quantenmechanische Unschärferelationen erzwingt eine endliche räumliche Ausdehnung solcher Verteilungsfunktionen. Die roten Kurven zeigen die zeitabhängige Aufenthaltswahrscheinlichkeit von verschiedenen kohärent schwingender Quantenzustände in der Materie. Links sieht man eine Ein-Phonon-Kohärenz, bei der die quantenmechanische Bewegung der Atome stark der klassischen Bewegung eines Pendels ähnelt (türkise Kugel). Diese bewegt sich während der Oszillation entweder von links nach rechts oder von rechts nach links. Auf der rechten Seite sehen wir die zeitabhängige Aufenthaltswahrscheinlichkeit einer Zwei-Phononen-Kohärenz. Die Quantenmechanik erlaubt eine nicht-klassische Bewegung, bei der ein Atom gleichzeitig an zwei unterschiedlichen Orten verweilen kann. Die Geschwindigkeit der Atome verhält sich auch nicht-klassisch, d.h., es kann zur gleichen Zeit von links nach rechts und von rechts nach links schwingen. Bei einem perfekten harmonischen Oszillator würden die Teilchenströme dieser beiden Anteile sich exakt auslöschen. Daher muss eine kleine Anharmonizität vorliegen, damit man die Emission eines kohärenten elektrischen Feldes wie in Abbildung 1(c) beobachten kann.

In der neuesten Ausgabe der Fachzeitschrift Physical Review Letters haben Forscher des Max-Born-Instituts in Berlin die neue Methode der Zwei-Dimensionalen (2D) Terahertz-Spektroskopie eingesetzt um nicht-klassische Zwei-Phononen-Kohärenzen mit großen räumlichen Amplituden zu erzeugen und nachzuweisen. In den Experimenten wechselwirkt eine Sequenz von drei phasengekoppelten THz-Impulsen mit einem 70-μm dicken Kristall des Halbleiters Indiumantimonid (InSb). Das elektrische Feld, das die bewegten Atome abstrahlen, dient als eine Sonde für die Atombewegung in Echtzeit. Ein zwei-dimensionales Abrasterverfahren (ein sogenannter 2D-scan), bei dem die zeitliche Verzögerung zwischen den drei THz-Impulsen variiert wird, zeigte ausgeprägte Zwei-Phononen-Signale und konnte deren Zeitstruktur aufdecken [Abb. 1]. Eine detaillierte theoretische Analyse brachte die Einsicht, dass nichtlineare Vielfach-Wechselwirkungen von allen drei THz-Impulsen nötig sind um solche starken Zwei-Phonen-Kohärenzen anzuregen. 

Die neue experimentelle Methode erlaubte zum ersten Mal Zwei-Phononen-Kohärenzen großer Amplitude in einem Kristall nachzuweisen. Alle experimentellen Beobachtungen sind in exzellenter Übereinstimmung mit der Quantentheorie. Dieser neue Typus von 2D-THz-Spektroskopie weist den Weg zur Erzeugung, Analyse und Manipulation von anderen Niedrig-Energie-Anregungen in Festkörpern, wie z.B. Magnonen oder optischen Übergängen in Exzitonen oder an Störstellen gebundenen Elektronen.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF