X-Ray Holography reveals Nano-Patchwork during Phase Transition in Vanadium Dioxide

In the prototypical material VO2, the role of electronic correlation in the phase transition between the insulating and metallic phase have long been debated. Combining spectroscopy and holography with x-rays, an international team of scientists has now observed how tiny patches of different phases evolve during the phase transition.

The interplay of the positions of the atomic nuclei and the spatial distribution and energies of the electrons providing the "glue" holding them together defines the properties of the materials that make up our world. Of particular interest to researchers is to understand the mechanisms at play in phase transitions. For example, vanadium dioxide (VO2) is insulating at low temperatures and becomes metallic above about 65°C. The change in the electronic structure (insulating vs. metallic) is accompanied by a change of the crystal structure from a monoclinic (M1) structure to a rutile (R) structure, with a minute change of atomic positions (See Fig.1). The driving forces for this phase transition have been a matter of long standing debate, specifically the role of electronic correlation in thin VO2 films, where it had been reported that the material turns metallic at slightly lower temperatures even before the atoms rearrange to the R-structure.A team of scientists from the Max Born Institute and the Technical University in Berlin, the ICFO and ALBA in Spain as well as the Vanderbildt University in the USA have now investigated this phase transition in thin VO2 films using x-ray spectro-holography. This technique allows to probe the electronic structure with 40 nm spatial resolution and can thus shed light on the role of inhomogeneity in the mechanism of the phase transition on the nanoscale. In the journal Nano Letters the researchers report that defects in the VO2 film can locally change the pathway of the phase transition. The picture that emerges from temperature series of spectro-holographic images through the phase transition as shown in Fig. 2 is the following:

Fig. 1:  Crystal structures for the insulating monoclinic phases M1 and M2 as well as for the metallic R rutile structure. Minute changes in atomic positions have a large effect on the material properties. Vanadium atoms are shown in orange, oxygen atoms in blue. Connecting lines are meant as guide to the eye.

A team of scientists from the Max Born Institute and the Technical University in Berlin, the ICFO and ALBA in Spain as well as the Vanderbildt University in the USA have now investigated this phase transition in thin VO2 films using x-ray spectro-holography. This technique allows to probe the electronic structure with 40 nm spatial resolution and can thus shed light on the role of inhomogeneity in the mechanism of the phase transition on the nanoscale. In the journal Nano Letters the researchers report that defects in the VO2 film can locally change the pathway of the phase transition. The picture that emerges from temperature series of spectro-holographic images through the phase transition as shown in Fig. 2 is the following:

Fig. 2: Images of the phase separation occurring when heating a 75 nm thin VO2 film. The images were acquired via x-ray spectro-holography and are displayed in false color to indicate the different regions: red = defect region, black = M1 phase, blue = M2 phase, green = R phase. Note that some sample regions transition directly from M1 to R (e.g. cross marker) while others transition via the intermediate M2 phase (e.g. diamond marker).

When raising the temperature, growth of metallic regions in R-structure start from nanoscale defects. At these defects, "misplaced atoms" generate a strain in their neighborhood that reduce the energy required for the M1 to R transition to occur. In turn, the volume mismatch between these two phases locally generates a new strain field, triggering the growth of domains in yet another, different monoclinic phase called M2 in adjacent regions. This effect hence leads to a coexistence of different phases of the material on the nanometer length scale, as seen e.g. as a stripe pattern at 335°K (62°C) in Fig. 2. At higher temperature, these still insulating M2 phases will ultimately also transform into the metallic R phase - just like some of the M1 phase patches will do directly. The pathway for the insulator to metal phase transition is thus not homogeneous throughout the thin VO2 film, but varies spatially. Researchers have been blind to the inhomogeneity on this small lengthscale in the past and may thus have come to wrong conclusions by averaging over these regions in their experiments. In particular, in this new work no evidence for reduced electronic correlations or a new monoclinic yet metallic phase below the phase transition temperature is seen, as has been discussed in the past. The results highlight the importance of combining spatial and spectroscopic resolution and will serve as the basis to study the dynamics of laser-driven phase transitions in materials with electronic correlation.

Search publications of MBI

advanced search
Search results

Publications since 2025

Sort: Year Author Title Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI or PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI or PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI or PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI or PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI or PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI or PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI or PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI or PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI or PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI or PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI or PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI or PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI or PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI or PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI or PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI or PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI or PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI or PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI or PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI or PDF