Wie Elektronen schwingende Atomkerne überholen – Der Röntgenfilm

Forscher des Max-Born-Institutes in Berlin verfolgten in Echtzeit die räumliche Schwingungsbewegung von Elektronen in einem Kristall, indem sie einen Film mit Hilfe von ultrakurzen Röntgen-Blitzen drehten. Die äußeren Elektronen bewegen sich auf der Längenskala einer chemischen Bindung vor und zurück und modulieren somit die elektrischen Eigenschaften, während sich dabei die inneren Elektronen und die Atomkerne nur um 1% dieser Strecke bewegen. 

Ein Kristall besteht aus einer regelmäßigen Anordnung von Atomen im Raum, auch Kristallgitter genannt, welches mit Hilfe der gegenseitigen, elektrostatischen Anziehungskräfte der Elektronenwolken benachbarter Atome  zusammen gehalten wird. Die meisten der Elektronen sind stark an einen individuellen, positiv geladenen Atomkern gebunden. Die äußersten Elektronen eines Atoms heißen Valenzelektronen und bauen die Bindung zu den Nachbaratomen auf. Diese Bindungen bestimmen den Atomabstand im Kristall sowie wesentliche Eigenschaften, wie etwa seine elektrische Leitfähigkeit oder mechanische Stabilität. 

Die Atome in einem Kristallgitter sind nicht etwa in Ruhe, sondern schwingen um ihre jeweilige Gleichgewichtsposition. Die räumliche Auslenkung der Bewegung der Atomkerne zusammen mit ihren Elektronen in den inneren Schalen beträgt typischerweise nur ein Prozent des Abstandes zwischen den Atomen. Wie sich die äußeren Valenzelektronen während dieser Gitterschwingung verhalten, war bislang nicht klar und die Größe ihrer Auslenkung gänzlich unbekannt. Eine direkte Messung dieser Bewegung in Echtzeit ist sehr wichtig für ein grundlegendes Verständnis der statischen und dynamischen elektrischen Eigenschaften des Kristalls.

Abb. 1 (A) Einheitszelle des KDP-Kristalls [gelbe Kugeln: Phosphoratome (P), rosa: Kalium (K), rot: Sauerstoff (O), weiß: Wasserstoff. (B) Elektronendichte „Landkarte“ in dem eingezeichneten Rechteck ρ0(r) vor der Laseranregung. Die schwarzen Linien deuten die Schachteln für verschiedene Atome an, in denen die Ladungsmenge und der Schwerpunkt der Ladungswolke gemessen werden. (C) und (D) Änderung der Ladungsdichte nach Laseranregung (rot: Ladungszunahme, blau: Abnahme). (E) Positionen der Atome in dieser Ebene und der Ladungsaustausch zwischen Phosphor und Sauerstoff. Die Elektronenwolke des Kaliumatoms zeigt Verzerrungen zwischen einer Zigarren- bzw. Pfannkuchen-Form.

Um diese offene Frage zu klären, haben Flavio Zamponi, Philip Rothhardt, Johannes Stingl, Michael Wörner und Thomas Elsässer ein Röntgen-Reaktionsmikroskop gebaut, das eine Aufnahme der Elektronenbewegung in Echtzeit in einem Kristall erlaubt. Wie sie in der neuesten Ausgabe der Fachzeitschrift PNAS (doi: 10.1073/pnas.1108206109) berichten, werden Gitterschwingungen in einem Kaliumdihydrogenphosphat (KDP)-Kristall mit Hilfe eines Laserblitzes angestoßen, der nur 50 Femtosekunden (1 fs = 10-15 Sekunden) dauert. Die momentanen Positionen der Atome und Elektronen werden dabei mit hoher räumlicher Auflösung mithilfe von 100 fs langen Röntgenblitzen gemessen, welche von den schwingenden Atomen gebeugt werden. Röntgenfotos, die zu verschiedenen Zeiten nach dem Start der Schwingung geschossen werden, bilden zusammen den gewünschten Röntgenfilm. 
 
Es war eine große Überraschung für die Forscher aus Berlin, dass nach Anregung einer speziellen Schwingung in KDP, der sogenannten „weichen“ Schwingung (engl. soft mode), die äußeren Valenzelektronen sich um eine 30-mal größere Entfernung während der Schwingung bewegten als die Atomkerne und deren Elektronen in den inneren Schalen. Dieses Verhalten kann man direkt in den Elektronendichte-„Landkarten“ in Bild 1 beobachten. Währende der soft-mode Oszillation bewegt sich ein ursprünglich auf dem Phosphor (P)-Atom sitzendes Elektron zu einem seiner Sauerstoff (O)-Nachbarn (P-O Bindungslänge: 160 Pikometer (10-12m)) und kehrt nach einer halben Oszillationsperiode wieder zum P-Atom zurück. Überraschenderweise bewegen sich dabei die beteiligten Atome nur wenige Pikometer, im krassen Gegensatz zum Lehrbuchwissen, nach dem man eine gemeinsame Bewegung aller Elektronen eines Atoms mit seinem Kern erwartet. Die überraschend weite Bewegung der Valenzelektronen kann man mit Hilfe der elektrostatischen Kräfte verstehen, die das schwingende Ionenkristallgitter während der soft-mode Oszillation auf die Elektronen ausübt. In den 1960er Jahren wurden schon Theorien entwickelt, die ein solches Verhalten vorhersagten. Jetzt ist endlich der experimentelle Nachweis gelungen. In dem beigefügten Film sieht man die Iso-Elektronendichte-Oberfläche des Kaliumions und des Phosphations während einer soft-mode Oszillation in KDP.

Die neu entwickelte Pulvermethode der Femtosekunden-Röntgenbeugung kann auf viele andere Systeme angewendet werden, um ultraschnelle chemische und physikalische Strukturänderungen abzubilden.

Erläuterung zum Film:

Oberfläche konstanter Elektronendichte r(r,t) = 6000 e-/nm3 im Bereich des Kaliumions (Kugel) und des Phosphations. Das Phosphoratom ist in der Mitte und die 4 Sauerstoffatome  sind außen in den Ecken eines Tetraeders angeordnet. Bei der Verzögerungszeit t=0 wird die soft-mode Oszillation angeregt und die elektronische Ladung fließt zwischen P und O hin und her. Als kleineren Effekt sieht man die Verzerrung der Elektronenwolke des Kaliumatoms zwischen einer Zigarren- bzw. Pfannkuchen-Form.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF