Wasser lässt das Proton zittern - ultraschnelle Bewegungen und kurzlebige Strukturen hydratisierter Protonen

Protonen in wässriger Umgebung spielen eine Schlüsselrolle in vielen chemischen und biologischen Prozessen. In Science berichten Dahms et al. über die direkte Aufzeichnung ultraschneller Protonbewegungen mittels Schwingungsspektroskopie. Sie zeigen, dass Protonen in Wasser vorwiegend zwischen zwei Wassermolekülen gebunden sind und dort fluktuierende Bewegungen im Femtosekundenbereich ausführen. Diese Dynamik ist 10 bis 50 Mal schneller als das Hüpfen des Protons in eine neue Umgebung, der elementare Schritt der Protonenwanderung in der Chemie.

Das Proton, der positiv geladene Kern H+ des Wasserstoffatoms und kleinste chemische Einheit, spielt eine Schlüsselrolle in der Chemie und der Biologie. Säuren entlassen Protonen in eine wässrige Umgebung, in der sie hochbeweglich sind und den Transport elektrischer Ladung dominieren. In biologischen Systemen ist der Konzentrationsgradient von Protonen über Zellmembranen die treibende Kraft der Zellatmung und Energiespeicherung. Selbst nach Jahrzehnten intensiver Forschung sind jedoch die molekularen Geometrien des Protons in Wasser und die Elementarprozesse der Protonendynamik hoch kontrovers geblieben.

Protonen in Wasser werden üblicherweise durch die beiden in Abb. 1A gezeigten Grenzstrukturen beschrieben. Im sogenannten Eigen-Komplex (H9O4+) (links) ist das Proton Teil des zentralen H3O+-Moleküls, das von drei Wassermolekülen umgeben ist. Im Zundel-Kation (H5O2+) (rechts) bildet das Proton zwei starke Wasserstoffbrücken mit zwei benachbarten Wassermolekülen. Zur Beschreibung dieser Systeme auf molekularem Niveau wird die Energiepotentialfläche des Protons verwendet (Abb. 1B), die sich für die beiden Geometrien deutlich unterscheidet. Für den Eigenkomplex erwartet man ein anharmonisches Potential mit einem Minimum während die Zundelgeometrie ein Doppelminimum-Potential aufweisen sollte. In Wasser sind solche Potentiale hochdynamisch und fluktuieren auf schnellen Zeitskalen, ein Verhalten, das durch thermische Bewegungen der umgebenden Wassermoleküle und des Protons verursacht wird.

Abb.1. Chemische Struktur hydratisierter Protonen in Wasser. A Schematische Darstellung des Eigen-Kations H9O4+ (links) und des Zundel-Kations H5O2+ (rechts). Die Pfeile markieren die Koordinate r der O-H Bindung und die (O...H+...O) Protontransfer-Koordinate z. Im Eigen-Kation wird das Proton durch eine kovalente O-H Bindung lokalisiert während es im Zundel-Kation zwischen den beiden Wassermolekülen delokalisiert ist. BAnharmonisches Schwingungspotential (links) und Doppelminimumpotential des Zundel-Kations entlang der Koordinate z (rechts, rote Linie). Das Doppelminimumpotential wird durch die Einwirkung der Flüssigkeitsumgebung verzerrt (rechts, gepunktete Linie). Die roten und blauen Pfeile markieren Schwingungsübergänge zwischen den Quantenzuständen des Protons, rote Pfeile vom Grund- in den ersten angeregten Zustand und blaue Pfeile vom ersten in den zweiten angeregten Zustand. Eine Modulation der Potentialflächen verändert den Abstand der Quantenzustände und damit die Energie der Schwingungsübergänge was durch zweidimensionale Schwingungsspektroskopie nachgewiesen wird.

Wissenschaftler des Max-Born-Instituts in Berlin und der Ben Gurion University of the Negev in Beer-Sheva, Israel, haben jetzt die ultraschnellen Bewegungen und transienten Strukturen von Protonen in Wasser unter Umgebungsbedingungen sichtbar gemacht. Sie berichten experimentelle und theoretische Ergebnisse in der Zeitschrift Science (doi:10.1126//science.aan5144), welche das Zundel-Kation als die in Wasser vorherrschende Spezies identifizieren. Die Femtosekundendynamik der Protonbewegungen (1 fs = 10-15 s) wurde mit Hilfe der Schwingungsübergänge zwischen den Quantenzuständen des Protons in Echtzeit aufgezeichnet (rote und blaue Pfeile in Abb. 1B). Die besonders aussagekräftige Methode der zweidimensionalen Schwingungsspektroskopie liefert die gelb-roten und blauen Konturen in Abb. 2A, die den Energiebereich der beiden Übergänge kennzeichnen. Die blaue Kontur befindet sich bei höheren Detektionsfrequenzen als die gelb-rote. Dieses Resultat stellt den ersten direkten Nachweis des Doppelminimum-Charakters des Protonpotentials (Abb. 1B rechts) in nativer wässriger Umgebung dar. Wäre das Proton in einem Potential mit einem Minimum gebunden (Abb. 1B links), würde die blaue Kontur bei kleineren Detektionsfrequenzen auftreten als die gelb-rote.

Abb. 2. Femtosekundendynamik der Protonbewegung (1 fs = 10-15 s). AZweidimensionales Schwingungsspektrum mit dem Übergang vom Grund- in den ersten angeregten Zustand (gelb-rote Kontur) und vom ersten in den zweiten angeregten Zustand (blaue Kontur). Die Ausrichtung der beiden Konturen entlang der Achse der Anregungsfrequenz wird durch ultraschnelle Frequenzfluktuationen und den Gedächtnisverlust in der Protonposition verursacht. B Theoretisch berechnete Echtzeitdynamik des Protons im Zundel-Kation. Innerhalb von weniger als 100 fs erfährt das Proton große Auslenkungen entlang der z-Koordinate, die die beiden Wassermoleküle verbindet. Auf Grund der ultraschnellen Modulation des Potentials durch die umgebenden Wassermoleküle nimmt das Proton vorübergehend alle Positionen entlang z ein.

Die Ausrichtung beider Konturen entlang der vertikalen Frequenzachse zeigt, dass beide Schwingungsübergänge einen riesigen Frequenzbereich innerhalb von weniger als 100 fs durchlaufen. Dies ist eine direkte Folge der ultraschnellen Modulation der Potentialfläche durch die Umgebung. Mit anderen Worten: das Proton nimmt innerhalb von weniger als 100 fs vorübergehend alle Positionen zwischen den beiden Wassermolekülen ein und verliert extrem schnell die Erinnerung daran wo es kurz vorher war. Die Modulation des Protonpotentials wird durch starke elektrische Felder verursacht, welche die Wassermoleküle der Umgebung auf das Zundel-Kation ausüben. Ihre schnelle thermische Bewegung führt zu starken Feldfluktuationen und Modulationen der Potentialfläche im Zeitbereich unter 100 fs. Dieses Bild wird unterstützt durch Referenzexperimente mit selektiv präparierten Zundel Kationen in anderen Lösungsmitteln und durch detaillierte theoretische Simulationen der Protondynamik (Abb. 2B).

Abb 3. Veranschaulichung der Dynamik hydratisierter Protonen in einem Bild der klassischen Physik. Das Proton Smiley sitzt in der Mitte eines Sofas mit zwei Plätzen. Wenn das Sofa durch eine mechanische Kraft angehoben oder abgesenkt wird verändert sich die Form der Sitzfläche und das Proton bewegt sich auf dem Sofa hin und her. Diese Bewegungen treten im realen System auf einer Zeitskala unterhalb von 100 fs (10-13 s) auf. Nach einer Durchschnittszeit von ca. 1 ps = 1000 fs = 10-12 s zerbricht das Sofa und das Proton bewegt sich an einen neuen Platz. Das neue Sofa besteht aus einem Teil des alten (blau) und einem neuen Teil (rot).

Ein Proton in einem einzelnen Zundel-Kation in Wasser wechselt in eine neue lokale Umgebung durch das Brechen und die Rekonstruktion von Wasserstoffbrücken. Diese Prozesse sind sehr viel langsamer als die Zitterbewegung des Protons und laufen im Zeitbereich einiger Pikosekunden ab (1 ps = 1000 fs = 10-12 s). Das hier vorgestellte neue Bild der Protondynamik ist von entscheidender Bedeutung für ein Verständnis des Protonentransports durch den berühmten von Grotthuss Mechanismus und für Protonverschiebungen in biologischen Systemen. 

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF