Schnelles Gold

Ein neuer Mechanismus in der Laser-Plasma-Beschleunigung wurde für Schwerionen entdeckt, der Mittels Coulomb-Explosion eine signifikante Zunahme der kinetischen Ionenenergie bewirkt.

Wir alle sind aus Sternenstaub gemacht - dieses poetische Bild enthält eine Menge an (noch) unbekannter, spannender Physik, die der Dichter vielleicht eigentlich nicht erzählen wollte. Unter den Top 10 der ungeklärten Fragen der Physik, rangiert auch die Frage nach der Entstehung der schweren Elemente - Bestandteil des Sternenstaubs. Einen tiefen Einblick in das Innere der schweren Teilchen und ihrer Synthese, kann man bisher nur erhaschen, wenn sie bei extrem hohen Geschwindigkeiten aufeinanderprallen und man die dadurch entstandenen Fragmente ihrer Atomkerne analysiert. Nicht nur die Kernphysiker haben Interesse an schnellen Schwerionen sondern sie sind auch in der Materialforschung und der Medizinforschung gefragt.

Produziert werden diese Ionenstrahlen mit Teilchenbeschleunigern, die zu den größten und komplexesten Maschinen der Welt gehören. Das motiviert natürlich auch die Suche nach neuen technischen Konzepten oder ihre Verbesserung. Ein alternativer Weg zur konventionellen Beschleunigertechnologie ist die Teilchenbeschleunigung durch ein Laser erzeugtes Plasma. Dazu benötigt man Laserintensitäten im sogenannten relativistischen Bereich, hier beschleunigt ein intensiver Laserpuls Elektronen bis fast auf Lichtgeschwindigkeit. Die Laser-Plasma Interaktion ist dabei durch relativistische Effekte der Elektronen-Photonen Wechselwirkung bestimmt. Ein einzelner Laserpuls erzeugt in einem räumlich sehr begrenzten Plasma enorm hohe, gerichtete Feldstärken in der Größenordnung von bis zu einigen Megavolt pro Mikrometer. In diesen Feldern können geladene Teilchen auf einer relativ kurzen Wegstrecke auf hohe Geschwindigkeiten beschleunigt werden, so z.B. auch Goldionen.

Abb. 1 Der Laserpuls (1.3 J @ 35f) wird auf eine 14nm dicke Goldfolie fokussiert. Das Bild zeigt die maximale Ionenenergie in Abhängigkeit ihrer Ionisationsstufe - wie sie im Experiment gemessen wurden (pinke Quadrate). Das Bild zeigt darüber hinaus die gute Übereinstimmung mit unseren 2D-PIC Simulation (schwarze Quadrate) - wie auch einen Vergleich zwischen der Voraussage des alten theoretischen Models (schwarze Linie) - und dem von uns neu entwickeltem Model (blaue Linie).

Die Herausforderung bei der Schwerionenbeschleunigung ergibt sich direkt aus einem Grundprinzip: Ionen werden proportional zu ihrem Ladungs/Masse Z/A) beschleunigt, das zu höheren kinetische Energien (~MeV/u) für leichtere Elemente führt, da es schwierig ist hohe Ionisationstufen bei schweren Elementen zu erreichen. Genau diesen Punkt konnten wir durch freistehende, ultradünne Goldfolien überwinden: Sie lieferten einen unerwarteten hohen Grad und eine spezifische Verteilung der Ionisation für das schwere Material (Z> 40 für Gold), so dass eine enorme, abstoßende Ladung wirkt und zur Beschleunigung der schweren Ionen über eine Coulomb Explosion führt. Verglichen zu vorangegangenen Experimenten konnten wir kinetische Energien der Goldionen mit 1 MeV pro Nukleon mit einer Ordnung geringerer Laserenergie erzeugen.

Bisher übliche Laser Plasma Beschleunigungsmodelle nehmen eine gemittelte Ionisierung an, aus der eine fixierte räumlich uniforme Elektronendichte folgt. Unsere theoretischen Analysen der experimentellen Resultate (siehe Bild) zeigen eine schichtweise unterschiedliche Ionisierung der Targetfolie, wobei Atome mit der höchsten Ionisierung sich an den Rändern der Folien befinden. Dadurch wird dort eine extrem hohe Raumladung erzeugt - die abstoßend auf die stark positiv geladenen, schweren Ionen wirkt - und diese zusätzlich beschleunigt.

Extrapoliert man unsere Erkenntnisse in den Parameterbereich für ein richtiges Kollisionsexperiment mit schnellen schweren Ionen, werden Femtosekundenlaser mit Pulsenergien von 100 J benötigt.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF