Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?

Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden. Magnetisierung wiederum ist fundamental mit dem Drehimpuls der Elektronen im Material verbunden. Ein Forscherteam unter der Leitung von Wissenschaftlern des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnte nun den Drehimpulstransfer bei der ultraschnellen optischen Entmagnetisierung in einer ferrimagnetischen Eisen-Gadolinium-Legierung im Detail verfolgen, um die grundlegenden Prozesse und deren Geschwindigkeitsgrenzen zu verstehen. Die Forschungsergebnisse wurden in der Zeitschrift „Physical Review Letters“ veröffentlicht.

Wenn die Magnetisierung eines ferromagnetischen Körpers verändert wird, will er sich drehen - dieser Zusammenhang zwischen der Magnetisierung und dem Drehimpuls wurde bereits 1915 in einem Experiment von Einstein und de Haas beobachtet. Der Grund für dieses Phänomen ist die Tatsache, dass die Magnetisierung auf mikroskopischer Ebene untrennbar mit dem Drehimpuls der Elektronen verbunden ist. Im Gegensatz zu Einstein und de Haas wissen die Physiker heute, dass sowohl die Bahnbewegung des Elektrons um den Atomkern als auch sein Spin - eine rein quantenmechanische Eigenschaft, die man sich gewissermaßen als Rotation des Elektrons um seine eigene Achse vorstellen kann - die Magnetisierung erzeugen. Tatsächlich erzeugt der Spin in einem ferromagnetischen Festkörper den Löwenanteil der Magnetisierung. Wenn der Drehimpuls erhalten bleibt, muss also eine Änderung der Magnetisierung mit einer Änderung anderer Formen des Drehimpulses im System einhergehen - im Einstein-de-Haas-Experiment war dies die resultierende Drehung eines aufgehängten Magneten nach Änderung seiner Magnetisierung. Auf mikroskopischer Ebene ist es die entsprechende Bewegung der Atome, die das letzte Reservoir des Drehimpulses bildet.

Die Belichtung mit einem ultrakurzen Laserpuls erlaubt es, ein Material sehr schnell zu entmagnetisieren - für die prototypischen Ferromagnete Eisen, Kobalt und Nickel zum Beispiel wird die Magnetisierung innerhalb von etwa einer Pikosekunde (10-12 s) nach dem Auftreffen des Laserpulses auf das Material ausgelöscht. Daraus ergibt sich die Frage, über welche Kanäle der mit der Magnetisierung verbundene Drehimpuls während der kurzen verfügbaren Zeit auf andere Reservoire übertragen wird. Forscher des MBI in Berlin sowie Wissenschaftler des Helmholtz-Zentrums Berlin (HZB) und der Nihon University, Japan, konnten diesen Drehimpulstransfer für eine Eisen-Gadolinium-Legierung nun im Detail verfolgen. In diesem ferrimagnetischen Material weisen benachbarte Eisen (Fe)- und Gadolinium (Gd)-Atome eine Magnetisierung mit entgegengesetzter Richtung auf. Mit ultrakurzen Röntgenpulsen haben die Forscher die Absorption zirkular polarisierter Röntgenstrahlen durch die Fe- und Gd-Atome als Funktion der Zeit nach der vorherigen Laseranregung beobachtet. Dieser Ansatz ist insofern einzigartig, als er es ermöglicht, das magnetische Moment während der ultraschnellen Entmagnetisierung an beiden Atomarten einzeln zu verfolgen. Darüber hinaus ist es sogar möglich, bei der Analyse der jeweiligen Absorptionsspektren zwischen dem in der Bahnbewegung und im Spin der Elektronen gespeicherten Drehimpuls zu unterscheiden.

Mit diesem detaillierten „Röntgenblick“ fanden die Wissenschaftler heraus, dass der Entmagnetisierungsprozess an den Gd-Atomen in der Legierung deutlich schneller ist als in reinem Gd. Dies ist jedoch nicht auf einen Drehimpulsaustausch zwischen den verschiedenen Arten von Atomen zurückzuführen, wie man aufgrund ihrer antiparallelen Ausrichtung vermuten könnte. "Wir verstehen die beschleunigte Reaktion von Gd als Folge der sehr hohen Temperaturen, die innerhalb des Systems der Elektronen in der Legierung erzeugt werden", sagt Martin Hennecke, der Erstautor der Studie. Interessanterweise konnte mit einer zeitlichen Auflösung von ca. 100 Femtosekunden (10-13 s) während der laserinduzierten Entmagnetisierung auch keine „Umverteilung“ des Drehimpulses zwischen Spin- und Bahnbewegung der Elektronen festgestellt werden - dies gilt lokal für alle Fe- und Gd-Atome. Wohin also geht der Drehimpuls? „Offensichtlich wird der gesamte Drehimpuls vollständig auf das Atomgitter übertragen“, sagt Hennecke. „Gemäß neuer theoretischer Vorhersagen wird der Spindrehimpuls zunächst über die Spin-Bahn-Wechselwirkung auf die Bahnbewegung am selben Atom übertragen. Nur können wir nicht sehen, wie der Drehimpuls dort zunimmt, da er direkt weiter an das Atomgitter geht.“ Der letztgenannte Prozess wurde in der Theorie kürzlich auf bis zu 1 Femtosekunde schnell geschätzt, und die detaillierten Experimente bestätigen nun, dass dieser letzte Transferschritt tatsächlich kein Engpass für den gesamten Drehimpulstransfer ist.

 

Da kurze Laserpulse auch zum permanenten Umschalten der Magnetisierung und damit zum Schreiben von Bits für die magnetische Datenspeicherung verwendet werden können, ist der Einblick in die Dynamik dieser grundlegenden Mechanismen von großer Bedeutung, um neue Ansätze zu entwickeln, die es ermöglichen, Daten viel schneller als heute auf Massenspeichermedien schreiben zu können.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF