Kontrolle von Spins mit Laserpulsen

OISTR, der schnellste Mechanismus zur kohärenten Kontrolle von Spins mit Licht, konnte erstmals experimentell überprüft werden, indem die magnetischen Eigenschaften von funktionalen Schichtsystemen auf der Zeitskala elektrischer Feldschwingungen eines ultrakurzen optischen Laserimpulses manipuliert wurden.

Die Kopplung zwischen den Atomen eines magnetischen Festkörpers, meist ferromagnetisch (FM, d.h. mit parallelen magnetischen Momenten an benachbarten Atomen) oder antiferromagnetisch (AFM, antiparallele Orientierung), bestimmt die grundlegenden Eigenschaften eines jeden magnetischen Materials. Diese Kopplung wird durch die sogenannte Austauschwechselwirkung zwischen den Elektronen benachbarter Atome gesteuert. Für ein typisches magnetisches Material liegt die mit dieser Wechselwirkung verbundene Zeitskala in der Größenordnung von wenigen 100 Femtosekunden. In kürzlich veröffentlichten theoretischen Arbeiten [1,2] konnte jedoch gezeigt werden, dass es möglich ist, die Magnetisierung über Lichtimpulse auch auf Zeitskalen deutlich unterhalb dieser Austauschwechselwirkungszeit zu steuern. Sogar die Änderung der magnetischen Ordnung von AFM auf FM ist für spezielle Materialien möglich, vorausgesetzt, dass sie aus verschiedenen Arten von Atomen bestehen und sogenannte Untergitter im Festkörper bilden. Hier kann das elektrische Feld des Laserimpulses Spin-polarisierte Elektronen und einen damit verbundenen Spinstrom zwischen den Untergittern anregen und so zu einer transienten Änderung der makroskopischen magnetischen Ordnung führen. Darüber hinaus konnte die Theorie zeigen, dass der Prozess des optischen Spin-Transfers (OISTR) die sehr schnelle Magnetisierungsdynamik in solchen maßgeschneiderten Materialien dominiert und erst zu späteren Zeiten von anderen, Spin-Bahn-Kopplung vermittelten Mechanismen gefolgt wird.

Das Verständnis dieser grundlegenden Prozesse während und nach der Anregung eines magnetischen Materials mit Laserlicht konnte nun erstmals experimentell überprüft werden. Dazu wurde ein Materialsystem untersucht, das sich laut theoretischer Berechnungen, durchgeführt in der Gruppe von Sangeeta Sharma am Max-Born-Institut, als besonders interessant herausgestellt hat. Ein Forscherkonsortium vom Max-Planck-Institut für Quantenoptik und Mikrostrukturphysik, dem Max-Born-Institut, der Universität Greifswald und der Technischen Universität Graz war in der Lage, die magnetischen Eigenschaften von Nickel/Platin-Schichtsystemen auf der Zeitskala der elektrischen Feldoszillationen des sichtbaren Lichts - und damit gleichzeitig mit seinen elektrischen Eigenschaften - zu manipulieren. Wie vorhergesagt, ändert das aus Nickel- und Platin-Untergittern bestehende Material seinen magnetischen Zustand bereits in weniger als 10 Femtosekunden. Synchron mit der Umverteilung von Elektronen zwischen Nickel und Platin Atomen durch das elektrische Feld des Laserimpules konnte die Änderung der makroskopischen Magnetisierung direkt sichtbar gemacht werden.

Dieses Ergebnis unterstreicht die Bedeutung des OISTR-Mechanismus und stellt die bisher schnellste Manipulation der Magnetisierung eines Materials dar. Sie bildet die Grundlage für eine verbesserte und kohärente Kontrolle der magnetischen Eigenschaften auf der Grundlage von Lichtimpulsen in entsprechend gestalteten Materialien; vielversprechend für zukünftige technologische Anwendungen.

1. J. K. Dewhurst, P. Elliott, S. Shallcross, E. K. U. Gross and S. Sharma
Nano Lett. 18, 1842, (2018)

2. J. K. Dewhurst, S. Shallcross, E. K. U. Gross and S. Sharma.
Phys. Rev. Appl. 10, 044065 (2018)

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF