Extrem kleine Atombewegungen werden mittels ultrakurzer Röntgenblitze aufgezeichnet

Periodische Atombewegungen auf einer Längenskala von einem Milliardstel eines Millionstels eines Meters (10-15 m) werden mittels ultrakurzer Röntgenimpulse abgebildet. Bei dieser neuen experimentellen Technik werden regelmäßig angeordnete Atome in einem Kristall durch einen Laserimpuls in Schwingungen versetzt, die mit Hilfe einer Reihe von Schnappschüssen über die geänderte Röntgenabsorption beobachtet werden.

Ein Kristall ist eine regelmäßige, periodische Anordnung von Atomen oder Ionen, welche über Kräfte zwischen deren Elektronen zusammengehalten werden. Die Atomkerne können Schwingungen um ihre Gleichgewichtspositionen ausführen. Die räumliche Auslenkung der Kerne bei solchen Schwingungen ist viel kleiner als der Abstand zwischen benachbarten Atomen. Dennoch hat die Schwingungsbewegung eine Rückwirkung auf die Elektronen, indem sie deren räumliche Verteilung moduliert und damit die elektronischen und optischen Eigenschaften des Kristalls verändert. Diese Prozesse laufen auf einer Zeitskala deutlich unterhalb einer Pikosekunde (1 ps = 10-12 s) ab. Um solche Effekte zu verstehen und auch anzuwenden, etwa in akusto-optischen Bauelementen, ist eine direkte Abbildung des filigranen Zusammenspiels zwischen Kern- und Elektronenbewegungen auf der Subpikosekunden-Zeitskala wünschenswert.

Abb. 1: In einem Röntgen-Absorptionsexperiment regt Licht ein stark gebundenes Rumpfelektron in einen Leitungsbandzustand des Kristalls an, wie auf der linken Seite der Abbildung gezeigt. Das Rumpfelektron des Li Atoms (grüne Wellenfunktion) wird ins Leitungsband (rote Wellenfunktion) angeregt, welches sowohl mit dem Li Kern als auch mit Borhydridgruppe wechselwirkt. Dieser Zustand reagiert sehr empfindlich auf Abstandsänderungen zwischen den An- und Kationen (siehe auch Abb. 2(b) und 3(d) im Hauptartikel). Auf der rechten Seite sieht man das Lithium K-Kanten-Röntgenabsorptionsspektrum für verschiedene, übertrieben große Schwingungsauslenkungen.

In der neuesten Ausgabe der Fachzeitschrift Physical Review B (Rapid Communication) berichten Forscher vom Max-Born-Institut in Berlin (Deutschland), vom Empa (Swiss Federal Laboratories for Materials Science and Technology in Dübendorf (Schweiz)) und dem National Institute of Standards and Technology, Gaithersburg (USA) über ein neuartiges Experiment, das es erlaubt, einerseits kohärente Atomschwingungen in kleinen LiBH4 Kristallen gezielt anzuregen, und andererseits diese über die modifizierte Röntgenabsorption auszulesen [Abb. 1.] In den Experimenten regte ein optischer Lichtimpuls (Wellenlänge 800 nm) mittels impulsiver Ramanstreuung ein optisches Phonon an [movie]. Die Atombewegungen dieser Schwingung verändern periodisch die Abstände zwischen Li+ und (BH4)- Ionen. Diese Distanzänderungen modulieren wiederum die räumliche Verteilung der Elektronen im Kristall und damit das Röntgen-Absorptionsspektrum Li+-Ionen. Auf diese Weise transformieren sich die Atomschwingungen in eine oszillatorische Modulation der Röntgenabsorption an der sogenannten Li K-Kante bei Photonenergien von 60 eV. Ultrakurze Röntgenblitze messen damit die Veränderungen der Röntgenabsorption zu verschiedenen Verzögerungszeiten zwischen Anreg- und Abtastimpulsen. Aus dieser Reihe von Schnappschüssen können dann die Atombewegungen rekonstruiert werden.

Was passiert in der Einheitszelle von LiBH4Kristallen nachdem eine impulsive Ramananregung mit einem Femtosekunden-Laserimpuls erfolgt ist? Oberes Teilbild: Gemessene, transiente Absorptionsänderung Δ A(t)(Symbole) als Funktion der Verzögerungszeit zwischen infraroten Anreg-Lichtimpulsen und Abtast-Impulsen im weichen Röntgenbereich bei Photonenergien von ħω = 61.5 eV [siehe auch Abb. 3(a) im Hauptartikel]. Die untere Box zeigt die Atome in der Einheitszelle von LiBH4Kristallen mit roten Boratomen, grauen Wasserstoffatomen und grünen Lithiumatomen. Der sich bewegende blaue Punkt im oberen Teilbild ist synchronisiert mit den sich bewegenden Atomen in der unteren Box. Die Amplitude der Bewegung ist um den Faktor 30000 überzeichnet, um die konzertierte Bewegung sichtbar zu machen. Die rötliche Farbe der Einheitszelle zeigt während des Impulsüberlapps die Intensität der infraroten Anreg-Lichtimpulse.

Das neue experimentelle Konzept ist extrem empfindlich und erlaubte zum ersten Mal Atomschwingungen mit extrem kleinen Amplituden anzustoßen und zu vermessen. Im vorliegenden Fall bewegten sich die Li+-Ionen nur eine Strecke von 3 Femtometern = 3 x 10-15 m, eine Länge, die etwa dem Durchmesser eines Li+Atomkerns entspricht. Diese Strecke ist damit 100000 mal kleiner als der Abstand zwischen den Ionen im Kristall. Die experimentellen Beobachtungen sind in exzellenter Übereinstimmung mit einer detallierten Theorie der Röntgenabsorption. Diese neue Methode auf der Femtosekunden-Zeitskala birgt ein vielversprechendes Potential, um das Zusammenspiel zwischen Kern- und Elektronenbewegungen in kondensierter Materie abzubilden und zu verstehen, eine wesentliche Voraussetzung für weitergehende Theorien und Anwendungen in verschiedenen Technologien.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF