Das Rätsel der langsamen Elektronen

2009 nannte es das Journal Nature Physics die "Ionisations-überraschung". Bislang gingen Physiker davon aus, dass sie die Ionisation von Atomen durch starke Laserfelder gut verstehen würden. Aber als sie Edelgasatome mit relativ langwelligem (einige µm) Laserlicht ionisierten, konnten sie unerwartet langsame Elektronen beobachteten, die durch die gängigen Theorien nicht zu erklären waren. In der aktuellen Ausgabe von Physical Review Letters haben Wissenschaftler der Universität Rostock, des Heidelberger Max-Planck-Instituts für Kernphysik und des Max-Born-Instituts diese Beobachtung nun erklärt.

Die Ionisation von Atomen durch starke Laserfelder spielt heute in Ultrakurzpuls-Laserlaboren eine wichtige Rolle. Der Prozess ist die Grundlage für wichtige Verfahren wie zum Beispiel die Erzeugung Hoher Harmonischer Photonen, die wiederum die Herstellung von Attosekunden-Laserpulsen (1 as = 10-18 s) ermöglichen. Mit Hilfe dieser Technik können tomographische Verfahren entwickelt werden, die die Beobachtung ultraschneller Elektron- und Atombewegungen auf einer Zeitskala von Attosekunden bis hin zu einigen Femtosekunden (1 fs = 10-15 s) erlauben. Bereits seit einigen Jahrzehnten verwenden Physiker theoretische Methoden, mit denen sie die Starkfeld-Laserionisation beschreiben. Sie basieren üblicherweise auf der sogenannten „Starkfeld-Näherung“ (SFA). Diese nimmt an, dass nach der Ionisation die Bewegung des freien Elektrons weitgehend durch das elektrische Feld des ionisierenden Lasers bestimmt wird, während die Coulomb-Kraft zwischen dem Elektron und dem zurückbleibenden Ion kaum eine Rolle spielt.

Die Starkfeld-Näherung hat den Wissenschaftlern über Jahre gute Dienste erwiesen und zum Verständnis von vielen experimentellen Beobachtungen bei der Ionisation mit starken Laserfeldern beigetragen. Allerdings nur bis jetzt! In einer bemerkenswerten Veröffentlichung haben Wissenschaftler aus den Vereinigten Staaten und Deutschland 2009 über ein neues Phänomens bei der Starkfeld-Ionisation berichtet: Sie beobachteten eine ausgeprägte Signalspitze in der kinetischen Energieverteilung der Photoelektronen bei sehr niedrigen Energien, die bis zu 50 Prozent der emittierten Elektronen beinhaltet. Bemerkenswerterweise konnte die physikalische Ursache nicht ermittelt werden.

In der neuen Veröffentlichung legen die Wissenschaftler aus Rostock, Berlin und Heidelberg nun dar, dass die niedrigen Elektronenenergien durch die Coulomb-Anziehung zwischen dem wegfliegenden Elektron und dem zurückbleibenden Ion hervor gerufen werden. Sie haben eine neuartige theoretische Beschreibung des Starkfeld-Ionisationsprozesses entwickelt, die zu Beginn des Ionisationsprozesses der alten Starkfeld-Näherung entspricht, jedoch später die Bahn des Elektrons in einem kombinierten Coulomb- und Laserfeld berechnet. Dieser Ansatz konnte in überzeugender Weise die niedrigen Photoelektronenenergien wiedergeben und zeigen, dass sie durch das hin und her schwingen des Elektrons im oszillierenden Laserfeld verursacht werden. Bei diesem Prozess werden die Elektronen in die Nähe des Ions gebracht, wobei die Elektronenbahnen erheblich gestört werden. Dies führt dazu, dass die Elektronen nur knapp der Anziehung des Ions entkommen können.

Der Coulomb-korrigierte SFA-Formalismus, der auf den oben beschriebenen Interferenzen von Quantenbahnen basiert, löste nicht nur das Rätsel der „Ionisation-Überraschung“, sondern war auch bei einer verwandten Arbeit zum Auftreten holographischer Strukturen in der Starkfeld-Ionisation hilfreich, die diese Woche in Science Express erscheint.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF

Weitere Informationen:

Kontakt

Prof. Dr. Marc Vrakking(030) 6392 1200, weitere E-Mail
Prof. Dieter Bauer, Universität Rostock, Institut für Physik, (0381) 498 6940