AC/DC für Terahertzwellen - Gleichrichtung im Pikosekundentakt

Forscher am Max-Born-Institut in Berlin entdecken einen ultraschnellen Gleichrichter für Terahertz-Strahlung. In den Einheitszellen eines Lithiumniobat-Kristalls werden Wechselströme mit einer 1000-fach höheren Frequenz als in modernen Computersystemen in Gleichstrom verwandelt, wobei gleichzeitig auch eine Serie von Oberwellen der Terahertz-Strahlung entsteht.

Wenn der Rockgitarrist Angus Young der australischen Band AC/DC die Saiten seiner elektrischen Gitarre zupft, entsteht ein stark verzerrter rockiger Klang im Lautsprecher. Ursache für die elektronisch erzeugten Obertöne ist der Gleichrichtereffekt in den Elektronenröhren des Gitarrenverstärkers. Im einfachsten Fall entsteht aus einem Wechselstrom [(A)lternating (C)urrent] ein Gleichstrom [(D)irect (C)urrent], ein Effekt, der in der Telekommunikation bei viel höheren Radio- oder Handyfrequenzen technische Anwendung findet. Physikalisch hochinteressant ist die Frage bis zu welchen Grenzfrequenzen man überhaupt gerichtete Gleichströme in Festkörpermaterialien erzeugen kann und welche Mechanismen dahinterstecken.

Abb. 1 Experiment: Das hohe elektrische Feld eines Terahertz-Impulses beschleunigt die Elektronen in einem Lithiumniobat (LiNbO3) Kristall. Die hexagonale Einheitszelle enthält Lithium-Atome (grüne Kugeln), Niob-Atome (blaue Kugeln), und Sauerstoffatome (rote Kugeln), welche auf den Ecken eines Oktaeders um die Niob-Atome angeordnet sind. Der Kristall besitzt keine Inversionssymmetrie und daher eine ferroelektrische Polarisation entlang der c-Achse.

Für die Erzeugung von Gleich- aus Wechselströmen muss das verwendete Material eine Vorzugsrichtung aufweisen. Diese Bedingung erfüllen ferroelektrische Kristalle, in denen die räumliche Trennung von positiven und negativen Ionen mit einer elektrischen Polarisation verbunden ist. Die meisten Ferroelektrika sind elektrische Isolatoren, d.h. bei kleinen von außen angelegten elektrischen Feldern fließt nahezu kein elektrischer Strom durch sie. Dieses Verhalten ändert sich drastisch wenn man für kurze Zeit ein sehr starkes elektrisches Feld im Bereich von mehreren 100.000 Volt pro Zentimeter anlegt. Bei solchen Feldstärken können gebundene Elektronen, sog. Valenzelektronen, mittels eines quantenmechanischen Tunnelprozesses für kurze Zeit frei beweglich gemacht werden und deshalb zu einem Strom durch den Kristall führen.

Abb. 2 Beim Transport von Elektronen entlang der c-Achse müssen diese alternierend unterschiedliche Abstände zwischen Lithium und Niob-Atomen überwinden. Die Niob-Atome ihrerseits sind nicht im Zentrum der Sauerstoff-Oktaeder. Beides führt zu asymmetrischen Barrieren (siehe Movie), die die Elektronen nur mittels des quantenmecheanischen Tunnelprozesses überwinden können. Sehr hohe elektrische Wechselfelder (AC) treiben die Elektronen durch die Tunnelbarrieren. Die Asymmetrie der Barrieren zusammen mit Dekohärenz führen zu in einem räumlich asymmetrischen Transport, d.h. auf einer Sub-Nanometer-Längenskala bewirkt das Terahertz-Feld einen Gleichstrom (DC) im LiNbO3-Kristall.

Die Eigenschaften eines derartigen Stroms wurden erstmals von Forschern am Max-Born-Institut in Berlin untersucht, worüber sie in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters112.146602 berichten. In Form ultrakurzer intensiver Terahertzimpulse (1 Terahertz = 1012 Hz, Dauer einer Feldschwingung 1 Pikosekunde=10-12 Sekunden) wurde ein Wechsel-(AC)-Feld an einen dünnen Kristall aus Lithiumniobat (LiNbO3) angelegt, das einen elektrischen Strom im Material erzeugt. Die Eigenschaften dieses Stroms wurden bestimmt, indem das von ihm abgestrahlte Feld gemessen und analysiert wurde. Die Forscher sahen neben einem oszillierenden Strom, der die Frequenz des angelegten Terahertz-Feldes (2 THz) und vielfache davon aufwies, auch die Signatur eines gleichgerichteten (DC) Stroms entlang der ferroelektrischen Vorzugsrichtung des LiNbO3-Kristalls.

Asymmetrische Tunnelwahrscheinlichkeit durch eine asymmetrische Barriere bei Anwesenheit von Dekohärenzprozessen: Die Tunnelbarriere (schwarze Kurven) lässt mehr Elektronen von rechts nach links als in umgekehrter Richtung durch. Ein Wellenpaket (rote Kurven) wird größtenteils an der Barriere reflektiert. Nur ein kleiner Teil (durch rote Diamanten gekennzeichnet) kann die Barriere quantenmechanisch durchtunneln. Seine Größe hängt bei Dekohärenz von der Durchquerungsrichtung ab. Die gestrichelte blauen Kurven zeigen zum Vergleich die Bewegung von Wellenpaketen bei Abwesenheit der Tunnelbarrieren.

Der gleichgerichtete Strom entlang der ferroelektrischen Achse hat seinen Ursprung im Zusammenspiel von quantenmechanischem Tunneln zwischen dem Valenz- und verschiedenen Leitungsbändern des LiNbO3-Kristalls und der Abbremsung der Elektronen durch Reibungsprozesse. Der Tunnelprozess erzeugt frei bewegliche Elektronen die ohne Reibung im Takt des angelegten Terahertzfeldes räumlich und zeitlich schwingen würden. Durch Reibung wird diese Schwingungsbewegung zerstört, ein als Dekohärenz bezeichneter Prozess. Da die Tunnelbarriere des LiNbO3entlang der ferroelektrischen Achse asymmetrisch ist, resultiert Dekohärenz in einem räumlich asymmetrischen Transport, d.h. die Tunnelbarriere lässt mehr Elektronen von rechts nach links als in umgekehrter Richtung durch. Dieser Mechanismus ist innerhalb einer Einheitszelle des Kristalls, d.h. auf einer Sub-Nanometer-Längenskala wirksam und bewirkt die Gleichrichtung des Terahertz-Feldes. Der Effekt lässt sich auch bei noch höheren Frequenzen ausnutzen wodurch sich interessante Anwendungsmöglichkeiten in der Höchstfrequenzelektronik ergeben.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF