Verstärkung von Schallwellen bei extremen Frequenzen

Ein elektrischer Strom durch eine Halbleiter-Nanostruktur verstärkt Schallwellen bei extrem hohen Frequenzen. Diese Methode ermöglicht neuartige, sehr kompakte Quellen von Ultraschall, die als Diagnosewerkzeug für das Abbilden von Werkstoffen und biologischen Strukturen mit sehr hoher räumlicher Auflösung dienen können.

Ultraschall besteht aus akustischen Wellen mit einer Frequenz weit über der Grenze, die von Menschen gehört werden kann. Ultraschall im Megahertz-Bereich (1 MHz = 106 Hz = 1 Million Schwingungen pro Sekunde) findet breite Anwendung in der Sonographie, z. B. für die medizinische Bildgebung der Organe im Körper und für die zerstörungsfreie Prüfung von Materialien. Die räumliche Auflösung des Bildes ist begrenzt durch die Wellenlänge des Ultraschalls. Um Objekte im Nanobereich (1 Nanometer = 10-9 m = 1 milliardster Teil eines Meters) abbilden zu können, sind Schallwellen mit einer Frequenz von mehreren hundert Gigahertz (1 Gigahertz (GHz) = 1000 MHz) erforderlich. Um solche Wellen als Diagnosewerkzeug verwenden zu können, müssen neue Quellen entwickelt werden, die eine ausreichende Schallintensität liefern.

Abb. 1 Änderungen der Reflexion als Funktion der Verzögerungszeit nach dem Pump-Puls. Die beobachteten Oszillationen sind proportional zur momentanen Amplitude der Schallwelle. Die blaue Kurve zeigt die Ergebnisse ohne Strom durch das Übergitter, die rote Kurve mit einem Strom von 1 A. Die Amplitude mit Strom ist immer größer als die ohne Strom. Die Verstärkung (das Verhältnis zwischen den roten und blauen Kurven) ist am deutlichsten bei Verzögerungszeiten über 300 ps (1 ps ist eine Pikosekunde, ein Millionstel einer Millionstel Sekunde), da die Verstärkung Zeit braucht.

In einer kürzlich erschienenen Veröffentlichung (K. Shinokita et al., Phys. Rev. Lett. 116, 075504 (2016)), haben Forscher aus dem Max-Born-Institut in Berlin zusammen mit Kollegen aus dem Paul-Drude-Institut, Berlin und der École Normale Supérieure, Paris, eine neue Methode für die Verstärkung solch hochfrequenter Schallwellen gezeigt. In einer speziell entwickelten Halbleiter-Struktur, die aus einer Folge von Nanoschichten besteht, werden Schallwellen mit einer Frequenz von 400 GHz mit kurzen optischen Impulsen aus einem Laser erzeugt und nachgewiesen. Der Schall wird durch Wechselwirkung mit einem elektrischen Strom verstärkt, der durch den Halbleiter in der gleichen Richtung wie die Schallwellen fließt. Diese Verstärkung basiert auf einen Prozess namens "SASER" (Sound Amplification by Stimulated Emission of Radiation), vollkommen analog zur Verstärkung des Lichtes in einem Laser (Light Amplification by Stimulated Emission of Radiation). Die Schallwelle regt Elektronen, die sich mit einer Geschwindigkeit höher als die Schallgeschwindigkeit bewegen, dazu an, von einem Zustand hoher Energie in einen Zustand niedrigerer Energie zu gehen und dadurch die Schallwelle stärker zu machen. Um eine Netto-Verstärkung zu erzielen, ist es notwendig, dass es mehr Elektronen in dem Zustand hoher Energie als in dem niedriger Energie gibt. Auf diese Weise wird eine Schallwelle mit einer Frequenz von 400 GHz um den Faktor zwei verstärkt.

Film: Die untersuchte Halbleiterstruktur besteht aus abwechselnden Schichten von Galliumarsenid und Aluminium-Gallium-Arsenid (hier in gelb und rot dargestellt). Ein kurzer Laserpuls (Pfeil von links) erzeugt eine akustische Welle, hier zu sehen als periodische Änderung der Schichtdicken. Während die Amplitude der akustischen Welle mit der Zeit zunimmt, wenn ein elektrischer Strom (bewegenden Elektronen, dargestellt als blaue Punkte) fließt, bleibt sie ohne Strom konstant (oberer Teil).

Die bisherige Arbeit demonstriert erstmals dieses Prinzip der Schallverstärkung. Um hiermit eine nutzbare Quelle für Hochfrequenz-Schallwellen zu bauen, ist es notwendig, die Verstärkung weiter zu steigern, was durch Verbesserung der Struktur und vor allem durch eine bessere Kühlung des Halbleiters möglich sein dürfte. Sobald solche Quellen verfügbar sind, kann Sonographie mit einer Ortsauflösung im Bereich der Größe von Viren betrieben werden, also auf einer Längenskala viel kürzer als die Wellenlänge des sichtbaren Lichts.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2026

Sortieren: Jahr Autor Titel Journal
A1-P-2026.01
Fragmentation dynamics of CS2 dications and trications following S 2p ionization

F. Allum, C.-S. Lam, B. Erk, H. Bromberger, P. H. Bucksbaum, M. Britton, M. Burt, N. Ekanayake, I. Gabalski, D. Garg, E. Gougoula, D. Heathcote, A. J. Howard, P. Hockett, D. M. P. Holland, S. Kumar, J. W. L. Lee, J. McManus, J. Mikosch, D. Milešević, R. S. Minns, C. C. Papadopoulou, C. Passow, W. O. Razmus, A. Röder, D. Rolles, A. Rouzée, M. S. Schuurman, A. Simao, A. Stolow, A.-T. Noor, J. Unwin, C. Vallance, T. Walmsley, M. Brouard, R. Forbes

Journal of Chemical Physics 164 (2026) 024304/1-16

URL, DOI oder PDF

A3-P-2025.28
Few-cycle pulses with 40 W average power at 100 kHz from a flat-top pumped OPCPA

H. Kassab, V. Fortin, M. Lavastre, L. Oppermann, G. Arisholm, T. Witting, M. J. J. Vrakking, S. Petit, F. J. Furch

Optics Express 34 (2026)

URL, DOI oder PDF

A3-P-2026.01
Apparatus for broadband, time-resolved measurements of laser-induced reflectivity transients with sub-10 fs resolution

H. M. Wrigge, T. Held, P. D. Ndione, T. Nagy, B. Rethfeld, P. Simon

Optics & Laser Technology 193, Part B (2026) 114354/1-8

URL, DOI oder PDF

B1-P-2025.17
Excitation of spin waves in ferrimagnetic alloy via optical transient grating spectroscopy

M. Brioschi, P. Carrara, N. N. Khatu, N. Berndt, P. R. Miedaner, D. Dagur, G. Vinai, D. Engel, C. von Korff Schmising, S. Bonetti, K. A. Nelson, G. Panaccione, G. Rossi, A. A. Maznev, R. Cucini

Advanced Photonics Research 7 (2026) e202500233/1-5

URL, DOI oder PDF

B1-P-2025.18
Soft X-ray imaging with coherence tomography in the water window spectral range using highharmonic generation

J. Reinhard, F. Wiesner, M. Hennecke, T. Sidiropoulos, S. Kaleta, J. Späthe, J. J. Abel, M. Wünsche, G. Schmidl, J. Plentz, U. Hübner, K. Freiberg, J. Apell, S. Lippmann, M. Schnürer, S. Eisebitt, G. G. Paulus, S. Fuchs

Light: Science & Applications 15 (2026) 79/1-10

URL, DOI oder PDF

B4-P-2026.01
Studies on multiferroics with weak magnetoelectric coupling using Green's function method

P. Balasubramanian, M. Sharma, T. Nishanth, K. Vikram

Physical Review B 724 (2026) 418166/1-7

URL, DOI oder PDF

C1-P-2025.03
Transient electronic polarizability of β-carotene from ultrafast terahertz Stark spectroscopy J. Zhang, C. Jaschke, B. P. Fingerhut, T. Elsaesser Journal of Physical Chemistry Letters Online (2026)

URL, DOI oder PDF

C3-P-2025.04
Light wave induced nanosecond-long persistent state in the Dirac semimetal Cd3As2

A. Ghalgaoui, P. Pilch, T. Kang, M. Runge, S. Kovalev, Y. Yang, F. Xiu, Z. Wang

Physical Review B 113 (2026) L041106/1-7

URL, DOI oder PDF

T1-P-2026.01
Keldysh approach to calculating the ionization rate in strong two-color fields

V. Tamulienė, I. Babushkin

Physical Review A 113 (2026) 013512/1-24

URL, DOI oder PDF

T1-P-2026.02
Encoding and manipulating ultrafast coherent valleytronic information with lightwaves

F. Gucci, E. B. Molinero, M. Russo, P. San-Jose, F. V. A. Camargo, M. Maiuri, M. Y. Ivanov, Á. Jiménez-Galán, R. E. F. Silva, S. Dal Conte, G. Cerullo

Nature Photonics online (2026) 1-10

URL, DOI oder PDF

T2-P-2026.01
Geometry of chiral temporal structures. I. Physical effects

A. F. Ordonez, A. Roos, P. M. Maier, P. Decleva, D. Ayuso, O. Smirnova

Physical Review A 113 (2026) 013110/1-

URL, DOI oder PDF

T2-P-2026.02
Geometry of chiral temporal structures. II. The formalism A. Roos, P. M. Maier, A. F. Ordonez, O. Smirnova Physical Review A 113 (2026) 013111/1-8

URL, DOI oder PDF