Ultradünne Wasserfilme zum Fließen gebracht - Ein Flachstrahl für Röntgenspektroskopie

Ein wichtiger Fortschritt für die Spektroskopie flüssiger Proben mit weicher Röntgenstrahlung durch ein neues Flachstrahlsystem ebnet den Weg für neuartige stationäre und zeitaufgelöste Experimente.

Element-spezifische Röntgenmethoden nehmen eine Schlüsselrolle ein bei der Untersuchung der atomaren Struktur und Zusammensetzung funktionaler Materialien. Mit Hilfe der Röntgenspektroskopie können Oxidationszustände, Abstände, Koordinationszahlen und die Art der nächsten Nachbarn des ausgewählten Elementes bestimmt werden. Mit einer großen Vielfalt spektroskopischer Methoden mit Röntgenstrahlung wurden bisher zahlreiche gasförmige, flüssige und feste Proben oder molekulare Systeme an Grenzflächen untersucht. Dabei wurden stationäre und zeitabhängige Materialeigenschaften vorwiegend an Synchrotronstrahlungsquellen und neuerdings an Röntgen-Freie-Elektronen-Lasern bestimmt.

Die Untersuchung flüssiger Proben mit Absorptionsspektroskopie im weichen Röntgenbereich (im Energiebereich von ca. 0.2 bis 1.5 keV) stellt eine besondere Herausforderung dar. Zum einen müssen die Experimente unter Ultrahochvakuum-Bedingungen durchgeführt werden, in einer Umgebung also, die scheinbar unvereinbar mit dem hohen Dampfdruck von Wasser ist. Außerdem erfordert die Messung der Transmission aufgrund der großen Absorptionsquerschnitte im weichen Röntgenbereich schwierig zu realisierende Probendicken im Bereich von einem Mikrometer und darunter (1 Mikrometer= 10-6 m = Ein millionstel Meter). Im Gegensatz dazu sind Messungen des Absorptionsspektrums basierend auf dem Nachweis sekundärer Zerfallssignale, wie zum Beispiel der Röntgenfluoreszenz, auf vergleichsweise hoch konzentrierte Proben beschränkt. 

Abb. Flachstrahlsystem für Flüssigkeiten mit den beiden Düsen, den beiden kollidierenden laminaren Flüssigkeitsstrahlen und dem 1 mm breiten und 5 mm langen blattförmigen Wasserfilm mit einer Dicke von 1 - 2 Mikrometern. Die Dicke des Films wurde aus Transmissionsmessungen an der Sauerstoff K Absorptionskante bestimmt (links). Das Flachstrahlsystem ermöglicht Absorptionsmessungen im weichen Röntgenbereich in Transmission, wie beispielhaft mit der Messung des Absorptionsspektrums an der Stickstoff K Absorptionskante von Ammoniumchlorid gezeigt werden konnte (rechts).

Eine Lösung für diese Probleme stellt die Verwendung von Zellen mit dünnen Membran-basierten Fenstern für Transmissionsmessungen dar. Damit kann die Dicke des Flüssigkeitsfilms zwar kontrolliert werden, allerdings können damit keine strahlungsempfindlichen molekularen Proben untersucht werden, da die Probe im Röntgenstrahl oder in einem sichtbaren Laserstrahl in Laser-Anrege und Röntgen-Abfrage Messungen zerstört wird. Dieser Strahlenschaden wird vermieden, indem die Probe in einem Flüssigkeitsstrahl kontinuierlich ersetzt wird. Mit solchen Flüssigkeitsstrahlen jedoch, wobei die Flüssigkeit durch eine Düse in die Hochvakuumkammer gepresst wird, ist es schwierig oder gar unmöglich, Probendicken im Bereich von einem Mikrometer oder darunter zu realisieren. 

In einer Zusammenarbeit haben nun Wissenschaftler des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), des Helmholtz-Zentrums Berlin (HZB) und des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) die erfolgreiche Umsetzung eines neuartigen Flachstrahlsystems für Transmissionsmessungen flüssiger Proben im weichen Röntgenbereich gezeigt. Dabei wurde ein wohlbekanntes Phänomen aus der Fluiddynamik ausgenutzt: Wenn sich zwei identische laminare Flüssigkeitsstrahlen unter einem wohldefinierten Winkel treffen, breitet sich die Flüssigkeit radial aus, was zur Ausbildung eines dünnen blattförmigen Flüssigkeitsfilm senkrecht zur Ebene der beiden Strahlen führt. Dieser Film wird durch eine ebenfalls aus der Flüssigkeit gebildeten Randlippe stabilisiert. 

Die Innovation besteht hier darin, dass ein über Stunden stabiler Flachstrahl im Vakuum (bei Drücken kleiner als 10-3 mbar) mit einer Dicke im Bereich von einem bis zwei Mikrometer realisiert und angewendet wurde. Erstmalig konnten damit Absorptionsspektren flüssiger Proben in Transmission mit Photonenenergien im Weichröntgenbereich und völlig ohne Membran-basierte Fenster gemessen werden. Die röntgenspektroskopischen Messungen wurden an der Synchrotronstrahlungsquelle für weiche Röntgenstrahlung BESSYII des Helmholtz-Zentrums Berlin durchgeführt. Dieser technologische Durchbruch eröffnet völlig neue Möglichkeiten für die stationäre und zeitaufgelöste Spektroskopie flüssiger Proben mit weicher Röntgenstrahlung.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF