Makroskopische elektrische Polarisationen und Elektronen auf atomarer Skala - ein neuer Zusammenhang aus Femtosekunden-Röntgenexperimenten

Röntgenexperimente im Femtosekunden-Bereich und ein neuer theoretischer Ansatz stellen eine direkte Verbindung zwischen elektrischen Eigenschaften makroskopischer Systeme und Elektronenbewegungen auf atomaren Längen- und Zeitskalen her. Die Ergebnisse eröffnen neue Wege zu Verständnis und Optimierung ferroelektrischer Materialien.

Die elektrische Polarisation ist eine makroskopische Größe, die das Dipolmoment von Materie beschreibt. Polarisationen werden durch die Verteilung elektrischer Ladungen auf atomarer Skala in polaren und ionischen Materialien hervorgerufen, darunter die besonders interessante Gruppe der Ferroelektrika. Deren spontane elektrische Polarisation findet Anwendung in elektronischen Sensoren, Speichern und Schaltelementen. Der Zusammenhang zwischen Polarisationen, vor allem zeitabhängigen, und mikroskopischen Elektronenverteilungen ist von großer Bedeutung für das Verständnis und die gezielte Veränderung der ferroelektrischen Eigenschaften.

Abb. 1: Oben: Kristallgitter des ferroelektrischen Ammoniumsulfats [(NH4)2SO4] mit verkippten Ammonium-Tetraedern (NH4+, Stickstoff blau, Wasserstoff weiß) und Sulfat-Tetraedern (SO42-, Schwefel gelb, Sauerstoff rot). Der grüne Pfeil zeigt die Richtung der makroskopischen Polarisation P an. Blaue Pfeile: Lokale Dipole zwischen Schwefel- und Sauerstoffatomen. Die Elektronendichtekarten unten links und im beigefügten Film wurden in der grau markierten Ebene aufgenommen. Die Karte unten links zeigt die stationäre Elektronenverteilung mit einer hohen Dichte im Schwefel- und einer geringeren Dichte in den Sauerstoffatomen. Unten rechts sind die Änderungen der lokalen Dipole zu einem Zeitpunkt von 2.8 ps nach der Anregung der Probe gezeigt (rote Pfeile, blaue Pfeile: stationärer Wert). Eine anisotrope Ladunsgverschiebung reduziert den nach rechts zeigenden Dipol und vergrößert die drei anderen.

Auf der Grundlage eines neuen experimentellen und theoretischen Ansatzes haben Wissenschaftler des Max-Born-Instituts jetzt eine direkte quantitative Verbindung zwischen makroskopischen Polarisationen und zeitabhängigen mikroskopischen Elektronendichten hergestellt. Wie sie in der Zeitschrift Physical Review B berichten, löst in den Experimenten eine optische Anregung atomare Bewegungen aus, welche die Elektronenverteilung im Femtosekunden-Zeitbereich modulieren (1 fs = 10-15 Sekunden). Die Elektronendynamik wird durch zeitaufgelöste Röntgen-Pulverbeugung aufgezeichnet. Aus den Daten werden räumlich und zeitlich aufgelöste "Landkarten" der Elektronendichte abgeleitet, die mit Hilfe eines neuen theoretischen Konzepts eine Bestimmung der momentanen makroskopischen Polarisation gestatten. Die Methode wurde anhand von zwei prototypischen Ferroelektrika demonstriert.

Movie: Links: Zeitanhängige Elektronendichte des Sulfations für Zeiten zwischen 2.7 und 5.1 ps nach der Anregung. Die Amplitude der gezeigten Dichteänderungen ist im Vergleich zum Experiment um einen Faktor 100 erhöht. Rechts: Zeitabhängige Stromdichte entlang der a-Achse des Kristalls, berechnet aus den transienten Elektronendichten. Die Stromdichte oszilliert mit einer Phasenverschiebung von 90 Grad relativ zur Elektronendichte.

Die theoretische Methode zur Beschreibung der ultraschnellen Dynamik von Ladung und Polarisation beruht auf einer Erweiterung von Ansätzen, die durch eine Betrachtung von Quantenphasen (Berry-Phase) stationäre makroskopische Polarisationen liefern. Wesentliche Schritte bestehen in der Berechnung mikroskopischer Stromdichten aus den zeitabhängigen Ladungsdichtekarten, wobei die kinetische Energie der Elektronen minimiert wird. Aus diesen so bestimmten mikroskopischen Stromdichten wird dann die makroskopische Polarisation bestimmt. Dieses Verfahren wird auf das Ferroelektrikum Ammoniumsulfat [(NH4)2SO4, Fig. 1] angewendet, die zeitabhängigen Ladungs- und Stromdichten sind in dem beigefügten Film gezeigt. Als zweites prototypisches System wurde KDP [KH2PO4] untersucht. Die Analyse liefert die Absolutwerte der makroskopischen Polarisationsänderungen, die durch mikroskopische Schwingungen moduliert werden.

Die Ergebnisse etablieren die Röntgenbeugung im Ultrakurzzeitbereich als ideales Werkzeug zur Erfassung makroskopischer elektrischer Eigenschaften komplexer Materialien. Die besondere Bedeutung dieser neuen Erkenntnisse wird durch die Würdigung der Publikation als "Editor's Suggestion" unterstrichen.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2026

Sortieren: Jahr Autor Titel Journal
A1-P-2026.01
Fragmentation dynamics of CS2 dications and trications following S 2p ionization

F. Allum, C.-S. Lam, B. Erk, H. Bromberger, P. H. Bucksbaum, M. Britton, M. Burt, N. Ekanayake, I. Gabalski, D. Garg, E. Gougoula, D. Heathcote, A. J. Howard, P. Hockett, D. M. P. Holland, S. Kumar, J. W. L. Lee, J. McManus, J. Mikosch, D. Milešević, R. S. Minns, C. C. Papadopoulou, C. Passow, W. O. Razmus, A. Röder, D. Rolles, A. Rouzée, M. S. Schuurman, A. Simao, A. Stolow, A.-T. Noor, J. Unwin, C. Vallance, T. Walmsley, M. Brouard, R. Forbes

Journal of Chemical Physics 164 (2026) 024304/1-16

URL, DOI oder PDF

A3-P-2025.28
Few-cycle pulses with 40 W average power at 100 kHz from a flat-top pumped OPCPA

H. Kassab, V. Fortin, M. Lavastre, L. Oppermann, G. Arisholm, T. Witting, M. J. J. Vrakking, S. Petit, F. J. Furch

Optics Express 34 (2026)

URL, DOI oder PDF

A3-P-2026.01
Apparatus for broadband, time-resolved measurements of laser-induced reflectivity transients with sub-10 fs resolution

H. M. Wrigge, T. Held, P. D. Ndione, T. Nagy, B. Rethfeld, P. Simon

Optics & Laser Technology 193, Part B (2026) 114354/1-8

URL, DOI oder PDF

B1-P-2025.17
Excitation of spin waves in ferrimagnetic alloy via optical transient grating spectroscopy

M. Brioschi, P. Carrara, N. N. Khatu, N. Berndt, P. R. Miedaner, D. Dagur, G. Vinai, D. Engel, C. von Korff Schmising, S. Bonetti, K. A. Nelson, G. Panaccione, G. Rossi, A. A. Maznev, R. Cucini

Advanced Photonics Research 7 (2026) e202500233/1-5

URL, DOI oder PDF

B1-P-2025.18
Soft X-ray imaging with coherence tomography in the water window spectral range using highharmonic generation

J. Reinhard, F. Wiesner, M. Hennecke, T. Sidiropoulos, S. Kaleta, J. Späthe, J. J. Abel, M. Wünsche, G. Schmidl, J. Plentz, U. Hübner, K. Freiberg, J. Apell, S. Lippmann, M. Schnürer, S. Eisebitt, G. G. Paulus, S. Fuchs

Light: Science & Applications 15 (2026) 79/1-10

URL, DOI oder PDF

B4-P-2026.01
Studies on multiferroics with weak magnetoelectric coupling using Green's function method

P. Balasubramanian, M. Sharma, T. Nishanth, K. Vikram

Physical Review B 724 (2026) 418166/1-7

URL, DOI oder PDF

C1-P-2025.03
Transient electronic polarizability of β-carotene from ultrafast terahertz Stark spectroscopy J. Zhang, C. Jaschke, B. P. Fingerhut, T. Elsaesser Journal of Physical Chemistry Letters Online (2026)

URL, DOI oder PDF

C3-P-2025.04
Light wave induced nanosecond-long persistent state in the Dirac semimetal Cd3As2

A. Ghalgaoui, P. Pilch, T. Kang, M. Runge, S. Kovalev, Y. Yang, F. Xiu, Z. Wang

Physical Review B 113 (2026) L041106/1-7

URL, DOI oder PDF

T1-P-2026.01
Keldysh approach to calculating the ionization rate in strong two-color fields

V. Tamulienė, I. Babushkin

Physical Review A 113 (2026) 013512/1-24

URL, DOI oder PDF

T1-P-2026.02
Encoding and manipulating ultrafast coherent valleytronic information with lightwaves

F. Gucci, E. B. Molinero, M. Russo, P. San-Jose, F. V. A. Camargo, M. Maiuri, M. Y. Ivanov, Á. Jiménez-Galán, R. E. F. Silva, S. Dal Conte, G. Cerullo

Nature Photonics online (2026) 1-10

URL, DOI oder PDF

T2-P-2026.01
Geometry of chiral temporal structures. I. Physical effects

A. F. Ordonez, A. Roos, P. M. Maier, P. Decleva, D. Ayuso, O. Smirnova

Physical Review A 113 (2026) 013110/1-

URL, DOI oder PDF

T2-P-2026.02
Geometry of chiral temporal structures. II. The formalism A. Roos, P. M. Maier, A. F. Ordonez, O. Smirnova Physical Review A 113 (2026) 013111/1-8

URL, DOI oder PDF