Makroskopische elektrische Polarisationen und Elektronen auf atomarer Skala - ein neuer Zusammenhang aus Femtosekunden-Röntgenexperimenten

Röntgenexperimente im Femtosekunden-Bereich und ein neuer theoretischer Ansatz stellen eine direkte Verbindung zwischen elektrischen Eigenschaften makroskopischer Systeme und Elektronenbewegungen auf atomaren Längen- und Zeitskalen her. Die Ergebnisse eröffnen neue Wege zu Verständnis und Optimierung ferroelektrischer Materialien.

Die elektrische Polarisation ist eine makroskopische Größe, die das Dipolmoment von Materie beschreibt. Polarisationen werden durch die Verteilung elektrischer Ladungen auf atomarer Skala in polaren und ionischen Materialien hervorgerufen, darunter die besonders interessante Gruppe der Ferroelektrika. Deren spontane elektrische Polarisation findet Anwendung in elektronischen Sensoren, Speichern und Schaltelementen. Der Zusammenhang zwischen Polarisationen, vor allem zeitabhängigen, und mikroskopischen Elektronenverteilungen ist von großer Bedeutung für das Verständnis und die gezielte Veränderung der ferroelektrischen Eigenschaften.

Abb. 1: Oben: Kristallgitter des ferroelektrischen Ammoniumsulfats [(NH4)2SO4] mit verkippten Ammonium-Tetraedern (NH4+, Stickstoff blau, Wasserstoff weiß) und Sulfat-Tetraedern (SO42-, Schwefel gelb, Sauerstoff rot). Der grüne Pfeil zeigt die Richtung der makroskopischen Polarisation P an. Blaue Pfeile: Lokale Dipole zwischen Schwefel- und Sauerstoffatomen. Die Elektronendichtekarten unten links und im beigefügten Film wurden in der grau markierten Ebene aufgenommen. Die Karte unten links zeigt die stationäre Elektronenverteilung mit einer hohen Dichte im Schwefel- und einer geringeren Dichte in den Sauerstoffatomen. Unten rechts sind die Änderungen der lokalen Dipole zu einem Zeitpunkt von 2.8 ps nach der Anregung der Probe gezeigt (rote Pfeile, blaue Pfeile: stationärer Wert). Eine anisotrope Ladunsgverschiebung reduziert den nach rechts zeigenden Dipol und vergrößert die drei anderen.

Auf der Grundlage eines neuen experimentellen und theoretischen Ansatzes haben Wissenschaftler des Max-Born-Instituts jetzt eine direkte quantitative Verbindung zwischen makroskopischen Polarisationen und zeitabhängigen mikroskopischen Elektronendichten hergestellt. Wie sie in der Zeitschrift Physical Review B berichten, löst in den Experimenten eine optische Anregung atomare Bewegungen aus, welche die Elektronenverteilung im Femtosekunden-Zeitbereich modulieren (1 fs = 10-15 Sekunden). Die Elektronendynamik wird durch zeitaufgelöste Röntgen-Pulverbeugung aufgezeichnet. Aus den Daten werden räumlich und zeitlich aufgelöste "Landkarten" der Elektronendichte abgeleitet, die mit Hilfe eines neuen theoretischen Konzepts eine Bestimmung der momentanen makroskopischen Polarisation gestatten. Die Methode wurde anhand von zwei prototypischen Ferroelektrika demonstriert.

Movie: Links: Zeitanhängige Elektronendichte des Sulfations für Zeiten zwischen 2.7 und 5.1 ps nach der Anregung. Die Amplitude der gezeigten Dichteänderungen ist im Vergleich zum Experiment um einen Faktor 100 erhöht. Rechts: Zeitabhängige Stromdichte entlang der a-Achse des Kristalls, berechnet aus den transienten Elektronendichten. Die Stromdichte oszilliert mit einer Phasenverschiebung von 90 Grad relativ zur Elektronendichte.

Die theoretische Methode zur Beschreibung der ultraschnellen Dynamik von Ladung und Polarisation beruht auf einer Erweiterung von Ansätzen, die durch eine Betrachtung von Quantenphasen (Berry-Phase) stationäre makroskopische Polarisationen liefern. Wesentliche Schritte bestehen in der Berechnung mikroskopischer Stromdichten aus den zeitabhängigen Ladungsdichtekarten, wobei die kinetische Energie der Elektronen minimiert wird. Aus diesen so bestimmten mikroskopischen Stromdichten wird dann die makroskopische Polarisation bestimmt. Dieses Verfahren wird auf das Ferroelektrikum Ammoniumsulfat [(NH4)2SO4, Fig. 1] angewendet, die zeitabhängigen Ladungs- und Stromdichten sind in dem beigefügten Film gezeigt. Als zweites prototypisches System wurde KDP [KH2PO4] untersucht. Die Analyse liefert die Absolutwerte der makroskopischen Polarisationsänderungen, die durch mikroskopische Schwingungen moduliert werden.

Die Ergebnisse etablieren die Röntgenbeugung im Ultrakurzzeitbereich als ideales Werkzeug zur Erfassung makroskopischer elektrischer Eigenschaften komplexer Materialien. Die besondere Bedeutung dieser neuen Erkenntnisse wird durch die Würdigung der Publikation als "Editor's Suggestion" unterstrichen.

Publikationen des MBI

erweiterte Suche
Suchergebnisse

Publikationen von 2025

Sortieren: Jahr Autor Titel Journal
A1-P-2025.01
Melting, bubblelike expansion, and explosion of superheated plasmonic nanoparticles

S. Dold, T. Reichenbach, A. Colombo, J. Jordan, I. Barke, P. Behrens, N. Bernhardt, J. Correa, S. Düsterer, B. Erk, T. Fennel, L. Hecht, A. Heilrath, R. Irsig, N. Iwe, P. Kolb, B. Kruse, B. Langbehn, B. Manschwetus, P. Marienhagen, F. Martinez, K.-H. Meiwes-Broer, K. Oldenburg, C. Passow, C. Peltz, M. Sauppe, F. Seel, R. M. P. Tanyag, R. Treusch, A. Ulmer, S. Walz, M. Moseler, T. Möller, D. Rupp, B. v. Issendorff

Physical review letters 134 (2025) 136101/1-7

URL, DOI oder PDF

A3-P-2025.01
Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase

L. Wang, S. R. Vangala, S. Popien, M. Beutler, J. M. Mann, V. L. Tassev, E. Büttner, V. Petrov

CrystEngComm 27 (2025) 1373-1376

URL, DOI oder PDF

A3-P-2025.02
Diode-pumped Kerr-lens mode-locked Yb:MgWO4 laser

H.-Y. Nie, Z.-L. Lin, P. Loiko, H.-J. Zeng, L. Zhang, Z. Lin, G. Z. Elabedine, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Letters 50 (2025) 1049-1052

URL, DOI oder PDF

A3-P-2025.03
Growth, anisotropy, and spectroscopy of Tm3+ and Yb3+ doped MgWO4 crystals

G. Z. Elabedine, R. M. Solé, S. Slimi, M. Aguiló, F. Díaz, W. Chen, V. Petrov, X. Mateos

CrystEngComm 27 (2025) 1619-1631

URL, DOI oder PDF

A3-P-2025.04
Growth, structure, spectroscopic, and laser properties of Ho-doped yttrium gallium garnet crystal

S. Slimi, H. Yu, H. Zhang, C. Kränkel, P. Loiko, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Optics Express 33 (2025) 2529-2541

URL, DOI oder PDF

A3-P-2025.05
Growth, spectroscopy and laser operation of disordered Tm,Ho:NaGd (MoO4)2 crystal

G. Z. Elabedine, Z. Pan, P. Loiko, H. Chu, D. Li, K. Eremeev, K. Subbotin, S. Pavlov, P. Camy, A. Braud, S. Slimi, R. M. Solé, M. Aguiló, F. Díaz, W. Chen, U. Griebner, V. Petrov, X. Mateos

Journal of Alloys and Compounds 1020 (2025) 179211/1-12

URL, DOI oder PDF

A3-P-2025.06
Kerr-lens mode-locked, diode-pumped Yb,Gd:YAP laser generating 23 fs pulses

H.-Y. Nie, P. Zhang, P. Loiko, Z.-L. Lin, H.-J. Zeng, G. Zhang, Z. Li, X. Mateos, H.-C. Liang, V. Petrov, Z. Chen, W. Chen

Optics Express 33 (2025) 11793-11799

URL, DOI oder PDF

A3-P-2025.07
Nanoindentation and laser-induced optical damage tests of CdSe nonlinear crystals

G. Exner, A. Carpenter, K. Cissner, A. Hildenbrand-Dhollande, S. Schmitt, A. Grigorov, M. Piotrowski, S. Guha, V. Petrov

Journal of the Optical Society of America B 42 (2025) A10-A14

URL, DOI oder PDF

A3-P-2025.08
Phase-matching properties of AgGa(Se1-xTex)2 for SHG of a CO2 laser

K. Kato, V. Petrov, K. Miyata

Proceedings of SPIE 13347 (2025) 133470S/1-4

URL, DOI oder PDF

A3-P-2025.09
Phase-matching properties of ZnSiAs2 in the mid-IR

T. Okamoto, N. Umemura, K. Kato, V. Petrov

Proceedings of SPIE 13347 (2025) 133470C/1-5

URL, DOI oder PDF

A3-P-2025.10
Direct generation of 3.5 optical-cycle pulses from a rare-earth laser

N. Zhang, Y. Wang, H. Ding, F. Liang, Y. Zhao, J. Xu, H. Yu, H. Zhang, V. Petrov

Optics Letters 50 (2025) 3150-3153

URL, DOI oder PDF

A3-P-2025.11
Power scaling of a non-resonant optical parametric oscillator based on periodically poled LiNbO3 with spectral narrowing

S. Das, T. Temel, G. Spindler, A. Schirrmacher, I. B. Divliansky, R. T. Murray, M. Piotrowski, L. Wang, W. Chen, O. Mhibik, V. Petrov

Optics Express 33 (2025) 5662-5669

URL, DOI oder PDF

A3-P-2025.12
Sub-40-fs diode-pumped ytterbium-doped mixed rare-earth calcium oxoborate laser

H.-J. Zeng, Z.-L. Lin, H. Lin, P. Loiko, L. Zhang, Z. Lin, H.-C. Liang, X. Mateos, V. Petrov, G. Zhang, W. Chen

Optics Express 33 (2025) 17965-17975

URL, DOI oder PDF

A3-P-2025.13
Spectroscopy and SESAM mode-locking of a disordered Yb:Gd2SrAl2O7 crystal

H.-J. Zeng, Z.-L. Lin, P. Loiko, F. Yuan, G. Zhang, Z. Lin, X. Mateos, V. Petrov, W. Chen

Optics Express 33 (2025) 15057-15066

URL, DOI oder PDF

A3-P-2025.14
Watt-level, 1.6 ps χ(2)-lens mode-locking of an in-band pumped Nd:LuVO4 laser

H. Iliev, V. Aleksandrov, V. Petrov, L. S. Petrov, H. Zhang, H. Yu, I. Buchvarov

Optics Express 33 (2025) 17773-17781

URL, DOI oder PDF

A3-P-2025.15
Refined phase-matching predictions for AgGa1-xInxS2 mixed chalcopyrite crystals

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A6-A9

URL, DOI oder PDF

A3-P-2025.16
35-fs diode-pumped mode-locked ytterbium-doped multi-component alkaline-earth fluoride laser

Z. Zhang, Z.-Q. Li, P. Loiko, H.-J. Zeng, G. Zhang, Z.-L. Lin, S. Normani, A. Braud, F. Ma, X. Mateos, H.-C. Liang, V. Petrov, D. Jiang, L. Su, W. Chen

Optics Letters 50 (2025) 1835-1838

URL, DOI oder PDF

A3-P-2025.17
Diode-pumped few-optical-cycle laser based on an ytterbium-doped disordered strontium yttrium borate crystal

H. Zeng, Z. Lin, S. Sun, P. Loiko, H. Lin, G. Zhang, Z. Lin, C. Mou, X. Mateos, V. Petrov, W. Chen

Optics Letters 50 (2025) 2203-2206

URL, DOI oder PDF

A3-P-2025.18
Refined Sellmeier and thermo-optic dispersion formulas for CdGeAs2

K. Kato, K. Miyata, V. Petrov

Journal of the Optical Society of America B 42 (2025) A24-A28

URL, DOI oder PDF

A3-P-2025.19
Diode-pumped mode-locked Yb:Ca3La2(BO3)4 laser generating 35 fs pulses

H.-J. Zeng, Z.-L. Lin, G. Zhang, Z. Pan, P. Loiko, X. Mateos, V. Petrov, H. Lin, W. Chen

Optics Express 33 (2025) 22988-22996

URL, DOI oder PDF