Die Erfindung des Lasers hat die Ära der nichtlinearen Optik begründet, die heute eine wichtige Rolle in vielen wissenschaftlichen, industriellen und medizinischen Anwendungen spielt. All diese Anwendungen profitieren von der Verfügbarkeit von kompakten Laserquellen im sichtbaren Bereich des elektromagnetischen Spektrums. Bei XUV-Wellenlängen ist die Situation eine völlig andere: Hier wurden sehr große Einrichtungen (so genannte Freie-Elektronen Laser) gebaut, um intensive XUV-Laserpulse zu erzeugen. Ein Beispiel ist FLASH in Hamburg, das sich über mehrere hundert Meter erstreckt. Es wurden auch kleinere intensive XUV-Quellen basierend auf der HHG entwickelt. Allerdings erstrecken sich diese Quellen immer noch über mindestens zehn Meter, und sie wurden bisher nur an sehr wenigen Universitäten und Forschungseinrichtungen weltweit demonstriert.
Ein Team von Wissenschaftlern vom Max-Born-Institut (Berlin), ELI-ALPS (Szeged, Ungarn) und INCDTIM (Cluj-Napoca, Rumänien) hat kürzlich ein neues Schema für die Erzeugung von intensiven XUV-Pulsen entwickelt. Ihr Konzept basiert auf HHG, wobei ein Laserpuls im Nah-Infraroten (NIR) Spektralbereich in ein gasförmiges Medium fokussiert wird. Dabei werden sehr kurze Lichtblitze erzeugt mit Frequenzen, die Harmonischen der NIR-Laserpulse entsprechen. Typischerweise können diese Lichtblitze dem XUV-Bereich zugeordnet werden. Um intensive XUV-Pulse erzeugen zu können, ist es wichtig, so viel XUV-Licht wie möglich zu erzeugen. Dies wird typischerweise dadurch erreicht, dass ein sehr großer Fokus des NIR-Lasers erzeugt wird, was letztlich ein sehr großes Labor erfordert.
Forschern vom Max-Born-Institut ist es nun gelungen, einen intensiven XUV-Laser zu schrumpfen, sodass der gesamte Aufbau sich nur noch über zwei Meter erstreckt. Um dies zu erreichen, haben sie den folgenden Trick angewandt: Anstatt das XUV-Licht in der Nähe des Fokus des NIR-Lasers zu erzeugen, haben sie einen sehr dichten Jet von Atomen relativ weit weg vom NIR-Fokus platziert, wie in Abbildung 1 zu sehen ist. Dies hat zwei wichtige Vorteile: (1) Da der NIR-Strahl an der Stelle des Jets recht groß ist, werden viele XUV-Photonen erzeugt. (2) Da außerdem auch der erzeugte XUV-Strahl recht groß ist und eine große Divergenz aufweist, kann er zu einer sehr kleinen Strahlgröße fokussiert werden. Die hohe Zahl von XUV-Photonen in Kombination mit der kleinen XUV-Fokusgröße ermöglicht die Erzeugung intensiver XUV-Laserpulse. Diese Ergebnisse wurden durch Computer-Simulationen bestätigt, die von einem Wissenschaftler-Team von ELI-ALPS und INCDTIM durchgeführt wurden.