MBI Staff Member – Personal info

Position

Project Member: 1.2 "Ultrafast Laser Physics and Nonlinear Optics"

Research

Mid-infrared laser becoming increasingly important for high-harmonic generation (attosecond pulse), development of novel x-ray sources, and strong-field physics. Optical parametric chirped-pulse amplification (OPCPA) seems to be the most promosing approach to generate high power midinfrared pulses, i.e. few-cyle pulses with pulse energies in the mJ range at kHz repetition rates. However, powerful pump lasers are required.

To exploite the relatively high nonlinear coefficient of non-oxide crystals, such as ZnGeP2, the emitted wavelength of the pump sources have to be above 2 µm. This ensures that the absorption in the nonlinear crystals is significantly reduced. Here we concentrate our research on regenerative amplifiers using Ho:YLF as a gain medium with a central wavelenght of around 2050 nm. Pulse energies in the millijoule regime (~10 mJ) have been achieved directly from our regenerative amplifier which was conceptually designed as a ring cavity. With the entire setup shown in Fig. 1 we are able to generate pulse energies of up to 55 mJ at 1 kHz with very low pulse-to-pulse fluctuations (rms < 0.5 %).

Fig. 1. High power 2 µm laser delivering pulse energies of up to 55 mJ. The seed-source is a three-stage system consiting of a fs Er:fiber laser, a super-continuum highly nonlinear fiber and a Tm:fiber pre amplifier. After 24 round trips a state of operation is reached where the regenerative amplifier emits stable pulses (rms < 0.3 %) of around 10 mJ at 1 kHz. A booster (two Ho:YLF crystals) stage raises the pulse energy to > 50 mJ.

Curriculum vitae

2013-present Postdoc at the Max Born Institute: High-power mid-infrared lasers

2013 Dissertation “Programmable ultrashort pulsed highly localized wave packets” at the Max Born Institute

2008-2013 Ph. D. student at the Max Born Institute

2008 Master thesis “Spatio-spectral shaping of few-cycle laser pulses with liquid crystal displays” at the Max Born Institute

2006-2008 Study of -Photonics- at the University of Applied Science Wildau (Graduation: Master of Engineering)

2005 Diploma thesis “Spatio-spectrally resolved characterization of ultrashort laser pulses” at the Max Born Institute (MBI) for Nonlinear Optics and Short Pulse Spectroscopy

2001-2005 Study of -Physical Engineering- of the department Engineering / Industrial Engineering with Business Studies at the University of Applied Science Wildau (Graduation: Diploma-Engineer)

MBI Publications

  1. Adaptive shaping of nondiffracting wavepackets for applications in ultrashort pulse diagnostics

    M. Bock, S. K. Das, C. Fischer, M. Diehl, P. Boerner, R. Grunwald

    Non-Diffracting Waves J. Wiley (2013) 271-285
  2. Sub-3-cycle vortex pulses of tunable topological charge

    M. Bock, J. Brunne, A. Treffer, S. Koenig, U. Wallrabe, R. Grunwald

    Optics Letters 38 (2013) 3642-3645
  3. Programmable ultrashort highly localized wave packets

    M. Bock

    Dissertation Humboldt-Universität zu Berlin (2013)
  4. Temporal multiplexing and shaping of few-cycle pulses with microoptical retroreflector arrays

    R. Grunwald, M. Bock, J. Jahns

    Advanced Optical Technologies 1 (2012) 97-99
  5. Spatially encoded localized wavepackets for ultrafast optical data transfer

    R. Grunwald, M. Bock

    Journal of the European Optical Society 7 (2012) 12009/1-3
  6. Few-cycle high-contrast vortex pulses

    M. Bock, J. Jahns, R. Grunwald

    Optics Letters 37 (2012) 3804-3806
  7. Ultrashort highly localized wavepackets

    M. Bock, S. K. Das, R. Grunwald

    Optics Express 20 (2012) 12563-12578
  8. Reconfigurable wavefront sensor for ultrashort pulses

    M. Bock, S. K. Das, C. Fischer, M. Diehl, P. Boerner, R. Grunwald

    Optics Letters 37 (2012) 1154-1156
  9. Highly efficient THG in TiO2 nanolayers for third-order pulse characterization

    S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, R. Grunwald

    Optics Express 19 (2011) 16985-16995
  10. Scattering-controlled femtosecond-laser induced nanostructuring of TiO2 thin films

    S. K. Das, A. Rosenfeld, M. Bock, A. Pfuch, W. Seeber, R. Grunwald

    SPIE Proceedings Series 7925 (2011) 79251B/1-9