MBI Staff Member – Personal info
Dr. Jens Tomm
jens.tomm(at)mbi-berlin.de
+49 30 6392 1453
C2: Solid State Light Sources
Building C, 3.1

Position
Project Member: 3.2 "Solids and Nanostructures: Electrons, Spins, and Phonons
Research
High-power semiconductor lasers are the most efficient man-made light sources, and can convert more than 80% electric energy into light. Currently emission powers of one kW continuous-wave powers are extracted from a single monolithic semiconductor chip. We are interested in the intrinsic limitations of such optoelectronic devices in terms of output power, beam quality (brightness) and lifetime (reliability). For this purpose, we analyze devices, but also their components such as surfaces and interfaces or gain materials such as quantum wells, superlattices and quantum dots.
For our experiments, we use optical tools, in particular transient spectroscopy that represents a generic competence of MBI. Such work is naturally carried out as collaborative work with device vendors, who provide us with high-quality industry-grade devices and structures. The use of such devices ensures high reproducibility and the chance to get general results, which not depend on the particular device structure that was studied. In BMBF-projects such as BlauLas, we work together with Osram OS (Regensburg), Dilas GmbH (Maiz) and Laserline GmbH (Mülheim) or in the frame of bilateral research contracts with Lumentum (Santa Clara) and 3S-Photonics (Nozay).
The material basis of the investigated devices is now focused to GaN-based wide-bandgap devices emitting in the ultraviolet to blue spectral regions. The figure shows damage patterns as observed in 450-nm emitting high power diode lasers after it experienced the so-called catastrophic optical damage in short-pulse operation.
Subfigure (a) shows the damage patterns at the font facet, where the light leaves the device (red circle), while (b) shows the same region from the side. A channel is visible which burned into the device and ends ~80 µm underneath the front facet; see (c). Subfigure (d) shows the end of this channel in higher resolution. The quantum wells, i.e. the gain medium are well resolved.
Curriculum vitae
2018 East China Normal University as ECNU High-End Expert, China
1999 Visitor at the RIKEN-Institute Sendai, Japan
1995 - present: Senior researcher at MBI
1993-1995: Visiting professor at Georgia Tech Atlanta, USA
1986-1989: R&D group leader in a subcontract "Optical characterization of II-VI materials for IR quantum detector fabrication".
1984-1986: R&D work in a subcontract to "Carl Zeiss Jena" company to develop diode lasers for an IR diode laser spectrometer.
1981-1984: PhD student, Dr. rer. nat. in Physics, summa cum laude, Humboldt University, Berlin 1984 Dissertation: Study of the optical properties of n-Pb1-xSnxTe/p-Pb1-xSnxTe/p-PbTe-heterostructures by means of photoluminescence and injection-luminescence.
1977-1982: Physics studies, Diploma in Physics summa cum laude, Humboldt University, Berlin 1982 Thesis: Luminescence properties of lead salts for optical and electrical excitation.
MBI Publications
- High single-spatial-mode pulsed power from 980 nm emitting diode lasers Applied Physics Letters 101 (2012) 191105/1-5
- Time-resolved reconstruction of defect creation sequences in diode lasers Laser & Photonics Reviews 6 (2012) L15-L19
- Defect propagation in broad-area diode lasers Materials Science Forum 725 (2012) 101-104
- Kinetics of defect propagation during the catastophic optical damage (COD) in broad-area diode lasers Materials Science Forum 725 (2012) 105-108
- Light-emitting tunneling nanostructures based on quantum dots in a Si and GaAs matrix Semiconductors 46 (2012) 1460 - 1470
- Light-emitting tunnel nanostructures based on quantum dots in the Si and GaAs matrix Fizika I Technika Poluprovodnikov 46 (2012) 1492-1503
- Relaxation pathways of excitation in the tunnel-injection structures with quantum dots Vestnik of St. Petersburg University 4 (2012) 34-35
- Emission properties of diode laser bars during pulsed high-power operation SPIE Proceedings Series 8241 (2012) 82410/1-6
- The dielectric function of PbS quantum dots in a glass matrix Optical Materials Express 2 (2012) 496-500
- Spectroscopic analysis of packaging concepts for high-power diode laser bars Applied Physics A 107 (2012) 371-377
Other Publications
Books
Juan Jiménez and Jens W. Tomm, "Spectroscopic Analysis of Optoelectronic Semiconductors", Springer Series in Optical Sciences Vol. 202 (Springer, 2016).
Jens W. Tomm and Juan Jiménez, "Quantum-Well Laser Array Packaging", Nanoscience and Technology Series (McGraw-Hill, 2007).