Dr. Martin Moerbeck-Bock
martin.bock(at)mbi-berlin.de
+49 30 6392 1442
C2: Solid State Light Sources
Haus C, 2.5
![](/fileadmin/Persons/mbock.4761d67a597a.jpg)
Position
Project Member: 1.2 "Ultrafast Laser Physics and Nonlinear Optics"
Research
Mid-infrared laser becoming increasingly important for high-harmonic generation (attosecond pulse), development of novel x-ray sources, and strong-field physics. Optical parametric chirped-pulse amplification (OPCPA) seems to be the most promosing approach to generate high power midinfrared pulses, i.e. few-cyle pulses with pulse energies in the mJ range at kHz repetition rates. However, powerful pump lasers are required.
To exploite the relatively high nonlinear coefficient of non-oxide crystals, such as ZnGeP2, the emitted wavelength of the pump sources have to be above 2 µm. This ensures that the absorption in the nonlinear crystals is significantly reduced. Here we concentrate our research on regenerative amplifiers using Ho:YLF as a gain medium with a central wavelenght of around 2050 nm. Pulse energies in the millijoule regime (~10 mJ) have been achieved directly from our regenerative amplifier which was conceptually designed as a ring cavity. With the entire setup shown in Fig. 1 we are able to generate pulse energies of up to 55 mJ at 1 kHz with very low pulse-to-pulse fluctuations (rms < 0.5 %).
Fig. 1. High power 2 µm laser delivering pulse energies of up to 55 mJ. The seed-source is a three-stage system consiting of a fs Er:fiber laser, a super-continuum highly nonlinear fiber and a Tm:fiber pre amplifier. After 24 round trips a state of operation is reached where the regenerative amplifier emits stable pulses (rms < 0.3 %) of around 10 mJ at 1 kHz. A booster (two Ho:YLF crystals) stage raises the pulse energy to > 50 mJ.
Curriculum vitae
2013-present Postdoc at the Max Born Institute: High-power mid-infrared lasers
2013 Dissertation “Programmable ultrashort pulsed highly localized wave packets” at the Max Born Institute
2008-2013 Ph. D. student at the Max Born Institute
2008 Master thesis “Spatio-spectral shaping of few-cycle laser pulses with liquid crystal displays” at the Max Born Institute
2006-2008 Study of -Photonics- at the University of Applied Science Wildau (Graduation: Master of Engineering)
2005 Diploma thesis “Spatio-spectrally resolved characterization of ultrashort laser pulses” at the Max Born Institute (MBI) for Nonlinear Optics and Short Pulse Spectroscopy
2001-2005 Study of -Physical Engineering- of the department Engineering / Industrial Engineering with Business Studies at the University of Applied Science Wildau (Graduation: Diploma-Engineer)
MBI Publikationen
- Femtosecond-laser-induced quasiperiodic nanostructures on TiO2 surfaces Journal of Applied Physics 105 (2009) 084912/1-5
- Adaptive Bessel-autocorrelation of ultrashort pulses with phase-only spatial light modulators SPIE Proceedings 7390 (2009) 73900B
- Self-reconstruction of pulsed optical X-waves Localized Waves; Wiley Series in Microwave and Optical Engineering Wiley-Interscience (2008) 299-314
- Noncollinear autocorrelation with radially symmetric nondiffracting beams SPIE Proceedings 7063 (2008) 706311 (12 pages)
- A chirped photonic-crystal fibre Nature Photonics 2 (2008) 679-683
- Ultrashort-pulsed truncated polychromatic Bessel-Gauss beams Optics Express 16 (2008) 1077-1089
- Smart spatio-temporal beam shaping with thin-film microoptics SPIE Proceedings 7062 (2008) 706202 (10 pages)
- Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators Applied Physics Letters 92 (2008) 151105/1-3
- Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses Applied Physics Letters 93 (2008) 181112/1-3
- Robust Shack-Hartmann wavefront sensing with ultraflat microaxicons Proceedings SPIE 6617 (2007) 661700/1-12