Dr. Martin Moerbeck-Bock
martin.bock(at)mbi-berlin.de
+49 30 6392 1442
C2: Solid State Light Sources
Haus C, 2.5

Position
Project Member: 1.2 "Ultrafast Laser Physics and Nonlinear Optics"
Research
Mid-infrared laser becoming increasingly important for high-harmonic generation (attosecond pulse), development of novel x-ray sources, and strong-field physics. Optical parametric chirped-pulse amplification (OPCPA) seems to be the most promosing approach to generate high power midinfrared pulses, i.e. few-cyle pulses with pulse energies in the mJ range at kHz repetition rates. However, powerful pump lasers are required.
To exploite the relatively high nonlinear coefficient of non-oxide crystals, such as ZnGeP2, the emitted wavelength of the pump sources have to be above 2 µm. This ensures that the absorption in the nonlinear crystals is significantly reduced. Here we concentrate our research on regenerative amplifiers using Ho:YLF as a gain medium with a central wavelenght of around 2050 nm. Pulse energies in the millijoule regime (~10 mJ) have been achieved directly from our regenerative amplifier which was conceptually designed as a ring cavity. With the entire setup shown in Fig. 1 we are able to generate pulse energies of up to 55 mJ at 1 kHz with very low pulse-to-pulse fluctuations (rms < 0.5 %).
Fig. 1. High power 2 µm laser delivering pulse energies of up to 55 mJ. The seed-source is a three-stage system consiting of a fs Er:fiber laser, a super-continuum highly nonlinear fiber and a Tm:fiber pre amplifier. After 24 round trips a state of operation is reached where the regenerative amplifier emits stable pulses (rms < 0.3 %) of around 10 mJ at 1 kHz. A booster (two Ho:YLF crystals) stage raises the pulse energy to > 50 mJ.
Curriculum vitae
2013-present Postdoc at the Max Born Institute: High-power mid-infrared lasers
2013 Dissertation “Programmable ultrashort pulsed highly localized wave packets” at the Max Born Institute
2008-2013 Ph. D. student at the Max Born Institute
2008 Master thesis “Spatio-spectral shaping of few-cycle laser pulses with liquid crystal displays” at the Max Born Institute
2006-2008 Study of -Photonics- at the University of Applied Science Wildau (Graduation: Master of Engineering)
2005 Diploma thesis “Spatio-spectrally resolved characterization of ultrashort laser pulses” at the Max Born Institute (MBI) for Nonlinear Optics and Short Pulse Spectroscopy
2001-2005 Study of -Physical Engineering- of the department Engineering / Industrial Engineering with Business Studies at the University of Applied Science Wildau (Graduation: Diploma-Engineer)
MBI Publikationen
- Nanostructured fibers for sub-10 fs optical pulse delivery Laser & Photonics Reviews 7 (2013) 566–570
- First measurement of the non-instantaneous response time of a χ(3) nonlinear optical effect Ultrafast Phenomena XVIII EDP Sciences (2013) 12005/1-3
- Verbesserte Diagnostik ultrakurzer Laserpulse - Kombinierte Messung von Wellenfront und ortsaufgelöster Pulsdauer Laser & Photonik 1 (2013) 32-35
- Temporal self-reconstruction of few-cycle nondiffracting wavepackets SPIE Proceedings Series 8611 (2013) 86110S
- MEMS axicons for nondiffracting line shaping of ultrashort pulses SPIE Proceedings Series 8637 (2013) 86370M/1-9
- Sub-3-cycle vortex pulses of tunable topological charge Optics Letters 38 (2013) 3642-3645
- Programmable ultrashort highly localized wave packetsDissertation Humboldt-Universität zu Berlin (2013)
- Temporal multiplexing and shaping of few-cycle pulses with microoptical retroreflector arrays Advanced Optical Technologies 1 (2012) 97-99
- Reconfigurable wavefront sensor for ultrashort pulses Optics Letters 37 (2012) 1154-1156
- Ultrashort highly localized wavepackets Optics Express 20 (2012) 12563-12578