Dr. Martin Moerbeck-Bock
martin.bock(at)mbi-berlin.de
+49 30 6392 1442
C2: Solid State Light Sources
Haus C, 2.5
Position
Project Member: 1.2 "Ultrafast Laser Physics and Nonlinear Optics"
Research
Mid-infrared laser becoming increasingly important for high-harmonic generation (attosecond pulse), development of novel x-ray sources, and strong-field physics. Optical parametric chirped-pulse amplification (OPCPA) seems to be the most promosing approach to generate high power midinfrared pulses, i.e. few-cyle pulses with pulse energies in the mJ range at kHz repetition rates. However, powerful pump lasers are required.
To exploite the relatively high nonlinear coefficient of non-oxide crystals, such as ZnGeP2, the emitted wavelength of the pump sources have to be above 2 µm. This ensures that the absorption in the nonlinear crystals is significantly reduced. Here we concentrate our research on regenerative amplifiers using Ho:YLF as a gain medium with a central wavelenght of around 2050 nm. Pulse energies in the millijoule regime (~10 mJ) have been achieved directly from our regenerative amplifier which was conceptually designed as a ring cavity. With the entire setup shown in Fig. 1 we are able to generate pulse energies of up to 55 mJ at 1 kHz with very low pulse-to-pulse fluctuations (rms < 0.5 %).
Fig. 1. High power 2 µm laser delivering pulse energies of up to 55 mJ. The seed-source is a three-stage system consiting of a fs Er:fiber laser, a super-continuum highly nonlinear fiber and a Tm:fiber pre amplifier. After 24 round trips a state of operation is reached where the regenerative amplifier emits stable pulses (rms < 0.3 %) of around 10 mJ at 1 kHz. A booster (two Ho:YLF crystals) stage raises the pulse energy to > 50 mJ.
Curriculum vitae
2013-present Postdoc at the Max Born Institute: High-power mid-infrared lasers
2013 Dissertation “Programmable ultrashort pulsed highly localized wave packets” at the Max Born Institute
2008-2013 Ph. D. student at the Max Born Institute
2008 Master thesis “Spatio-spectral shaping of few-cycle laser pulses with liquid crystal displays” at the Max Born Institute
2006-2008 Study of -Photonics- at the University of Applied Science Wildau (Graduation: Master of Engineering)
2005 Diploma thesis “Spatio-spectrally resolved characterization of ultrashort laser pulses” at the Max Born Institute (MBI) for Nonlinear Optics and Short Pulse Spectroscopy
2001-2005 Study of -Physical Engineering- of the department Engineering / Industrial Engineering with Business Studies at the University of Applied Science Wildau (Graduation: Diploma-Engineer)
MBI Publikationen
- 5 µm few-cycle pulses with multi-gigawatt peak power at a 1 kHz repetition rate Optics Letters 42 (2017) 3796-3799
- Spectral anomalies and Gouy rotation around the singularity of ultrashort vortex pulses Optics Express 25 (2017) 26076-26088
- Array-specific propagation effects of flexibly structured ultrashort pulses SPIE Proceedings Series 10120 (2017) 01200S/1-8
- Nondiffracting self-imaging of ultrashort wavepackets Optics Letters 42 (2017) 2374-2377
- Adaptive non-collinear autocorrelation of few-cycle pulses with an angular tunable bi-mirror Applied Physics Letters 108 (2016) 051103/1-5
- Mapping the spectral twist of few cycle vortex pulses SPIE Proceedings Series 9764 (2016) 97640O/1-7
- Taming chaos: 16 mJ picosecond Ho:YLF regenerative amplifier with 0.7 kHz repetition rate Laser & Photonics Reviews 10 (2016) 123–130
- Ho:YLF chirped pulse amplification at kilohertz repetition rates – 4.3 ps pulses at 2 μm with GW peak power Optics Letters 41 (2016) 4668-4671
- High-energy multi-kilohertz Ho-doped regenerative amplifiers around 2 µm Optics Express 23 (2015) 14744-14752
- Picosecond 34 mJ pulses at kHz repetition rates from a Ho:YLF amplifier at 2 μm wavelength Optics Express 23 (2015) 33142-33149