MBI-Mitarbeiter - Persönliche Daten


Project Member: 1.2 "Ultrafast Laser Physics and Nonlinear Optics"


Mid-infrared laser becoming increasingly important for high-harmonic generation (attosecond pulse), development of novel x-ray sources, and strong-field physics. Optical parametric chirped-pulse amplification (OPCPA) seems to be the most promosing approach to generate high power midinfrared pulses, i.e. few-cyle pulses with pulse energies in the mJ range at kHz repetition rates. However, powerful pump lasers are required.

To exploite the relatively high nonlinear coefficient of non-oxide crystals, such as ZnGeP2, the emitted wavelength of the pump sources have to be above 2 µm. This ensures that the absorption in the nonlinear crystals is significantly reduced. Here we concentrate our research on regenerative amplifiers using Ho:YLF as a gain medium with a central wavelenght of around 2050 nm. Pulse energies in the millijoule regime (~10 mJ) have been achieved directly from our regenerative amplifier which was conceptually designed as a ring cavity. With the entire setup shown in Fig. 1 we are able to generate pulse energies of up to 55 mJ at 1 kHz with very low pulse-to-pulse fluctuations (rms < 0.5 %).

Fig. 1. High power 2 µm laser delivering pulse energies of up to 55 mJ. The seed-source is a three-stage system consiting of a fs Er:fiber laser, a super-continuum highly nonlinear fiber and a Tm:fiber pre amplifier. After 24 round trips a state of operation is reached where the regenerative amplifier emits stable pulses (rms < 0.3 %) of around 10 mJ at 1 kHz. A booster (two Ho:YLF crystals) stage raises the pulse energy to > 50 mJ.

Curriculum vitae

2013-present Postdoc at the Max Born Institute: High-power mid-infrared lasers

2013 Dissertation “Programmable ultrashort pulsed highly localized wave packets” at the Max Born Institute

2008-2013 Ph. D. student at the Max Born Institute

2008 Master thesis “Spatio-spectral shaping of few-cycle laser pulses with liquid crystal displays” at the Max Born Institute

2006-2008 Study of -Photonics- at the University of Applied Science Wildau (Graduation: Master of Engineering)

2005 Diploma thesis “Spatio-spectrally resolved characterization of ultrashort laser pulses” at the Max Born Institute (MBI) for Nonlinear Optics and Short Pulse Spectroscopy

2001-2005 Study of -Physical Engineering- of the department Engineering / Industrial Engineering with Business Studies at the University of Applied Science Wildau (Graduation: Diploma-Engineer)

MBI Publikationen

  1. Smart spatio-temporal beam shaping with thin-film microoptics

    R. Grunwald, M. Bock, Huferath-von Luepke, S.

    SPIE Proceedings 7062 (2008) 706202 (10 pages)
  2. Ultrashort-pulsed truncated polychromatic Bessel-Gauss beams

    R. Grunwald, M. Bock, V. Kebbel, S. Huferath, U. Neumann, G. Steinmeyer, G. Stibenz, J.-L. Néron, M. Piché

    Optics Express 16 (2008) 1077-1089
  3. A chirped photonic-crystal fibre

    J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, G. Steinmeyer

    Nature Photonics 2 (2008) 679-683
  4. Noncollinear autocorrelation with radially symmetric nondiffracting beams

    Huferath-von Luepke, S., V. Kebbel, M. Bock, S. K. Das, R. Grunwald

    SPIE Proceedings 7063 (2008) 706311 (12 pages)
  5. Self-reconstruction of pulsed optical X-waves

    R. Grunwald, U. Neumann, U. Griebner, G. Steinmeyer, G. Stibenz, M. Bock

    Localized Waves; Wiley Series in Microwave and Optical Engineering Wiley-Interscience (2008) 299-314
  6. Angular tolerance of Shack-Hartmann wavefront sensors with microaxicons

    R. Grunwald, S. Huferath, M. Bock, U. Neumann, S. Langer

    Optics Letters 32 (2007) 1533-1535
  7. Robust Shack-Hartmann wavefront sensing with ultraflat microaxicons

    R. Grunwald, M. Bock, S. Huferath

    Proceedings SPIE 6617 (2007) 661700/1-12
  8. Räumlich-spektral aufgelöste Charakterisierung von ultrakurzen Laserimpulsen

    M. Bock

    Diplomarbeit Technische Fachhochschule (2005)