MBI-Mitarbeiter - Persönliche Daten


  • Project Coordinator: 4.1 "Implementation of Lasers and Measuring Techniques"
  • Project Member 1.2 "Ultrafast Laser Physics and Nonlinear Optics"


My research mainly deals with the development of solid-state lasers and optical-parametric amplifiers.

Diode-pumped laser of high average power, in particular:

  • lasers amplifiers utilizing Thin-disks (laser material Yb:YAG)
  • fiber lasers and fiber amplifiers based on Photonic Crystal fibers
  • Femtosecond Yb:KGW oscillators and amplifiiers

OCPA systems pumped with Thin-disk lasers for generating femtosecond pulses

The second focus of my work consists in the development of photoinjector drive lasers. When focusing these pulses onto a photocathode, electron bunches of high density are generated. After being accelerated in a linac, these bunches are well suited for driving Free Electron Lasers (FELs). The properties of these electron bunches can be optimized by appropriately tuning the shape of the picosecond laser pulses. To accomplish this, we have developed the first Yb:YAG laser in the world, that can generate trains (bursts) of ultraviolet laser pulses with variable shape.
Several of these lasers are used at electron accelerators and FELs, such as:

Lasers for driving the photo injectors:

  • Photoinjector drive lasers for the superconducting photo injector at the HZDR (Dresden Rossendorf),
  • Laser for development and test of photoinjectors at the HZB Berlin

Burst-mode lasers for driving the photo injectors of superconducting linacs that are operated with bursts of electron bunches:

  • Photoinjector drive laser for the European XFEL at DESY Hamburg
  • Photocathoce lasers for the FLASH FEL and, previously, the TESLA Test Facility (TTF)) and the at DESY Hamburg
  • Photocathode lasers with shaped pulses, e.g. for the Photoinjektor Test Facility Zeuthen (PITZ). This outstanding laser generates trains of flat top pulses with sharp edges (< 2 ps). Since 2008, this laser has been applied for driving the Photo injectors at PITZ. A significant improvement of the emittance of the generated electron beams was achieved by optimizing the shape of the laser pulses.

Pulse trains messured in the XFEL photokathode laser after the oscillator, the fiber amplifiier , the multipass ampliifer and the booster

Curriculum vitae

1994-present: Scientist and Project Manager of several projects at the MBI as well as projects conducted in cooperation with DESY, HZB Berlin and HZDR Dresden (Rossendorf) to develop special solid-state lasers and femtosecond OPCPA systems

1993-1994: Scientist and project manager at the Max-Born-Institute (MBI) Berlin. Field of work:

  • Development of CPA Solid-state laser systems,
  • Laser plasma interaction,
  • Diagnostics of laser-induced plasmas.

1992-1993: Postdoctoral appointee at the Laboratory for Laser Energetics, Rochester, (USA). Working areas:

  • Highly-stable diode-pumped Nd:YLF amplifiers
  • Development of a Large Aperture Ring Amplifier (LARA) for large flashlamp-pumped Nd:glass fusion laser systems.

1991-1992: Scientist at the Institute for Nonlinear Optics and Short-pulse spectroscopy Berlin (Germany). Working areas:

  • Pulsed solid-state lasers,
  • Laser plasma interaction.

1991: PhD from the Technical University Berlin on pulse amplification in high-power solid-state laser systems, with Prof. H. Weber and Prof. W. Brunner

1985-1991: Scientist at the Central Institute for Optics and Spectroscopy Berlin.


MBI Publikationen

  1. Laser-plasma sources for extreme ultraviolet (EUV) lithography

    M. Schnürer, H. Stiel, U. Vogt, S. Avetisyan, I. Will, M. P. Kalachnikov, W. Radloff, P. Nickles, W. Sandner

    LaserOpto 33 (2001) 50-56
  2. Towards time resolved, coupled structure-function information on carotenoid excited state processes: X-ray and optical short pulse double resonance spectroscopy

    H. Stiel, D. Leupold, M. Beck, I. Will, H. Lokstein, W. Sandner

    Journal of Biomedical and Biophysical Methods 48 (2001) 239-246
  3. Scaling a water jet laser plasma source for EUV-lithography to high average power

    U. Vogt, H. Stiel, I. Will, M. Wieland, T. Wilhein, P. V. Nickles, W. Sandner

    SPIE Proceedings Series 4343 (2001) 87-93
  4. Influence of laser intensity and pulse duration on the EUV-yield from a water jet target laser plasma

    U. Vogt, H. Stiel, I. Will, P. V. Nickles, W. Sandner, M. Wieland, T. Wilkens

    Applied Physics Letters 79 (2001) 2336-2338
  5. A pulse-train laser driven XUV-source for picosecond pump-probe experiments in the water window

    M. Beck, U. Vogt, I. Will, A. Liero, H. Stiel, W. Sandner, T. Wilhein

    Optics Communications 190 (2001) 317-326
  6. A laser system for the TESLA photon collider based on an external ring resonator

    I. Will, H. Redlin, T. Quast, W. Sandner

    Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors and associated Equipment 472/1-2 (2001) 79-85
  7. Running Experience with the laser system for the RF gun based injector at the TESLA Test Facility linac

    S. Schreiber, I. Will, D. Sertore, A. Liero, W. Sandner

    Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors and associated Equipment 445 (2000) 427-431
  8. Extreme ultraviolet source development: A comparison of different concepts

    G. Schriever, M. Rahe, U. Rebhan, D. Basting, W. J. Walecki, H. Lauth, R. Lebert, K. Bergmann, D. Hoffmann, O. Rosier, W. Neff, R. Poprawe, R. Sauerbrey, H. Schwoerer, S. Düsterer, C. Ziener, P. Nickles, H. Stiel, I. Will, W. Sandner, G. Schmahl, D. Rudolph

    SPIE Proceedings Series 4146 (2000) 113-120
  9. On the way to a superdonducting RF-gun: first measurements with the gun cavity

    E. Barthels, H. Büttig, F. Gabriel, D. Janssen, A. Bushuev, M. Karliner, S. Konstantinov, S. Kruchov, O. Myshkin, V. Petrov, I. Sadleyarov, A. Tribendis, V. Volkov, W. Sandner, I. Will, P. v. Stein, H. Vogel, A. Matheisen, M. Pekeler, Ch. Haberstroh, A. Thiel

    Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors and associated Equipment 445 (2000) 408-412
  10. First Observation of Self-Amplified Spontaneaous Emission in a Free-Electron Laser at 109 nm Wavelength

    J. Andruszkow, I. Will, A. Liero, W. Sandner, TeslaCollaboration

    Physical Review Letters 85 (2000) 3825-3829