DNA speichert unseren genetischen Code. Solare UV-Strahlung ist hinreichend hochenergetisch, um grundsätzlich Bindungen in der DNA zu brechen und damit DNA-Schäden zu verursachen. Doch obwohl DNA (z. B. in unseren Hautzellen) täglich intensiver UV-Bestrahlung durch die Sonne ausgesetzt ist, stellt sich die DNA als erstaunlich lichtstabil heraus. Es ist seit langem bekannt, dass dies durch Mechanismen zu erklären ist, die die elektronische Energie hocheffizient in andere Formen von Energie umwandeln, insbesondere in Wärme. Dabei spielen Schnittflächen der multidimensionalen Potentialhyperflächen, sogenannte konische Durchdringungen, zwischen den elektronisch angeregten Zuständen und dem elektronischen Grundzustand eine wichtige Rolle. Diese konischen Durchdringungen werden mit strukturellen Änderungen der Moleküle in Verbindung gebracht. Die genauen Wege zurück in den elektronischen Grundzustand sind Thema intensiver Forschung.
Obwohl die DNA ein Makromolekül mit mehreren Milliarden Atomen (im Falle menschlicher DNA) ist, lässt sie sich doch in nur wenige unterschiedliche strukturelle (und funktionale) Elemente einteilen: vier DNA Basen, ein Zuckerrest und eine Phosphatgruppe. Die Absorption von UV Licht findet ausschließlich in den DNA-Basen statt. Deshalb ist es ein üblicher Forschungsansatz, zunächst nur die Reaktion der DNA-Basen auf UV-Absorption zu untersuchen.