Als Folge der Wechselwirkung von intensiven Laserpulsen mit Clustern zeigen die gemessenen Elektronenspektren typischerweise eine kontinuierliche Verteilung. In der Vergangenheit führte das Fehlen von Spuren diskreter Zustände zu der Schlussfolgerung, dass die Dynamiken von geladenen Partikeln während der Cluster-Expansion gut durch ein vollständig klassisches Verhalten beschrieben werden können. Eine Auswirkung davon ist, dass Simulationen, die die Wechselwirkung von intensiven Lasern mit Clustern, Nanopartikeln oder großen Molekülen modellieren, oft auf quasiklassische Ansätze zurückgreifen. Mit dem Aufkommen neuer Laserquellen und zeitaufgelöster Techniken innerhalb des letzten Jahres begann dieses Bild zu wackeln. Kürzlich wurde über eine effiziente Erzeugung von angeregten Atomen in Nanoplasmen berichtet, die durch Elektronen-Ionen Rekombination ausgelöst wird. Wenn ein Atom mit 2 Elektronen in angeregten Zuständen entsteht, kann es durch Elektronen-Korrelation zerfallen, wobei ein Elektron in das Kontinuum emittiert wird, während das 2. Elektron in einen niedrigeren gebundenen Zustand relaxiert. Da jedoch die Elektronen, die in einem solchen Autoionisations-Prozess emittiert werden, kinetische Energie mit der Cluster-Umgebung austauschen, waren diese bisher nicht in Experimenten beobachtet worden.
Klassisch oder nicht? Physik der Nanoplasmen
Abb. 1 (a) Zweidimensionale Elektronen-Impulsabbildung emittiert von O2 Molekülen, die eine anisotrope Verteilung der Elektronen mit einem Maximum in paralleler (vertikal) Richtung zur NIR Laser Polarisationsrichtung zeigt. (b) Im entsprechenden kinetischen Energie-Spektrum ist die beobachtete Peak-Struktur zurückzuführen auf Ionisation oberhalb des Schwellenwertes sowie Freeman-Resonanzen. (c) Die Elektronen-Impulsabbildung von O2Clustern mit einer durchschnittlichen Größe von 2400 Molekülen weist ein deutlich isotroperes Verhalten auf.. (d) Im Spektrum der kinetischen Energie tauchen 3 Peaks auf, die Autoionisations-Prozessen zugeordnet werden können als Folge des Zerfalls von superangeregten atomaren Zuständen.
In einer Kollaboration angeführt von Wissenschaftlern des Max-Born-Instituts wurde nun über den ersten Beweis für Autoionisation als Folge der Wechselwirkung zwischen intensiven NIR-Laserpulsen und Clustern berichtet. In der aktuellen Ausgabe von Physical Review Letters [114, 123002 (2015)] präsentieren Bernd Schütte, Marc Vrakking und Arnaud Rouzée sowie ihre Kollegen Jan Lahl, Tim Oelze und Maria Krikunova von der TU Berlin die Ergebnisse, die in Sauerstoff-Clustern erzielt wurden. Dieses System wurde gewählt, weil bereits bekannt war, dass Sauerstoff-Atome langlebige autoionisierende Zustände aufweisen. In der aktuellen Studie wurden deutliche Peaks im Elektronen-Spektrum von Sauerstoff-Clustern beobachtet, die mit intensiven NIR-Pulsen ionisiert wurden (Abb.. 1). Diese Peaks konnten gut bekannten autoionisierenden Zuständen zugeordnet werden, und es wurde gezeigt, dass sie auf einer Nanosekunden-Zeitskala zerfallen, wenn sich der Cluster bereits deutlich ausgedehnt hat. Deshalb war der Einfluss der Umgebung auf die Elektronen, die als Folge der Autoionisation emittiert wurden, vernachlässigbar. Die beobachteten Beiträge der Autoionisation waren sehr empfindlich bezüglich der Intensität des NIR-Laserpulses. Bei größeren Intensitäten wurden die Autoionisations-Peaks verschmiert, waren jedoch immer noch sichtbar. Diese Ergebnisse deuten darauf hin, dass Autoionisation in vielen Experimenten eine wichtige Rolle spielt, in denen die Wechselwirkung von intensiven Laserpulsen mit Partikeln auf einer Nanometer-Skala untersucht wird, selbst dann, wenn diese Prozesse nicht direkt im Elektronen-Spektrum beobachtet werden können. Bereits zuvor wurde gezeigt, dass die beobachtete Nanoplasma-Dynamik als Folge intensiver XUV und NIR Ionisation von Clustern ähnlich sind, weshalb erwartet wird, dass die aktuellen Ergebnisse auch eine hohe Relevanz für Experimente an neuartigen Freie-Elektronen Lasern haben. Die experimentellen Funde der Autoionisation sind desweiteren wichtig, um theoretische Modelle von Nanoplasmen in der Zukunft zu verbessern und so ein besseres Verständnis über die zugrundeliegenden mikroskopischen Prozesse zu gewinnen.