/de/current/index.html
Highlights und Aktuelles
frühere Highlights im Archiv
28. April 2016: Die Quantenschaukel - ein Pendel das gleichzeitig vor und zurück schwingt
Ultrakurze Terahertz-Impulse regen Zwei-Quanten-Oszillationen von Atomen in einem Halbleiterkristall an. Die von den bewegten Atomen abgestrahlten Terahertz-Wellen werden mittels einer neuen zeitaufgelösten Technik analysiert und zeigen den nicht-klassischen Charakter der Atombewegungen von großer Amplitude.. ... weiterlesen.
 
22. April 2016: Ultraschnelle Photoelektronenspektroskopie enthüllt Ringen zwischen verschiedenen Autoionisationskanälen
Mit Hilfe von zeit-, energie- und winkelaufgelöster Photoelektronenspektroskopie gelang es Forschern vom Max-Born-Institut in Berlin, in Kooperation mit Kollegen aus Mailand und Padua, Schnappschüsse von gekoppelten Rydbergorbitalen während ultraschneller Autoionization aufzunehmen. ... weiterlesen.
 
8. März 2016: Thomas Elsässer erhält den Ellis R. Lippincott Award
Thomas Elsässer, Direktor am Max-Born-Institut und Professor für Experimentalphysik an der Humboldt Universität zu Berlin, erhält den Ellis R. Lippincott Award 2016 in Anerkennung seiner "bahnbrechenden Beiträge zum Verständnis kohärenter und inkohärenter Schwingungsdynamik von Wasserstoffbrücken in Flüssigkeiten und Biomolekülen". ... weiterlesen.
 
18. Februar 2016: Verstärkung von Schallwellen bei extremen Frequenzen
Ein elektrischer Strom durch eine Halbleiter-Nanostruktur verstärkt Schallwellen bei extrem hohen Frequenzen. Diese Methode ermöglicht neuartige, sehr kompakte Quellen von Ultraschall, die als Diagnosewerkzeug für das Abbilden von Werkstoffen und biologischen Strukturen mit sehr hoher räumlicher Auflösung dienen können ... weiterlesen.
 
19. Januar 2016: Unsichtbare Lichtblitze entfachen Nano-Feuerwerk
Ein Team von Wissenschaftlern des Max-Born-Institutes Berlin und der Universität Rostock hat einen neuartigen Weg gefunden, transparente Nanoteilchen schlagartig undurchsichtig zu machen und mit Laserlicht blitzschnell aufzuheizen. Ihre Ergebnisse könnten ungeahnte Möglichkeiten für Medizin und Technik eröffnen. ... weiterlesen.
 

 
Weitere Einzelheiten:

 


Die Quantenschaukel - ein Pendel das gleichzeitig vor und zurück schwingt

28. April 2016

Ultrakurze Terahertz-Impulse regen Zwei-Quanten-Oszillationen von Atomen in einem Halbleiterkristall an. Die von den bewegten Atomen abgestrahlten Terahertz-Wellen werden mittels einer neuen zeitaufgelösten Technik analysiert und zeigen den nicht-klassischen Charakter der Atombewegungen von großer Amplitude.

Das klassische Pendel einer Standuhr schwingt mit einer wohl definierten Auslenkung und Geschwindigkeit zu jedem Zeitpunkt vor und zurück. Während dieser Schwingung bleibt seine Gesamtenergie konstant, welche durch eine beliebig wählbare Anfangsauslenkung vorgegeben ist. Oszillatoren in der Quantenwelt der Atome und Moleküle verhalten sich völlig anders: Deren Energie hat diskrete Werte entsprechend der unterschiedlichen Quantenzustände eines Oszillators. Der "verschmierte" Ort eines Atoms in einem Energieeigenzustand des Oszillators wird mit Hilfe der Wellenfunktion beschrieben, deren Amplitude keinerlei Schwingungen aufweist.

Schwingungsbewegungen in der Quantenwelt erfordern eine Überlagerung unterschiedlicher Quantenzustände - sogenannte Kohärenzen oder Wellenpakete. Die Überlagerung zweier benachbarter Oszillatorzustände entspricht einer Ein-Quantenkohärenz, bei der die Atombewegung dem klassischen Pendel sehr ähnelt. Viel interessanter sind Zwei-Quantenkohärenzen, eine waschechte nicht-klassische Anregung, bei der ein Atom gleichzeitig an zwei verschiedenen Orten sein kann. Seine Geschwindigkeit verhält sich auch nicht-klassisch, was bedeutet, dass es sich zur selben Zeit von links nach rechts und von rechts nach links bewegt (siehe Movie). Solche Bewegungen existieren nur für sehr kurze Zeiten, weil die wohl definierte Überlagerung der Quantenzustände aufgrund der sogenannten Dekohärenz innerhalb weniger Pikosekunden (1 Pikosekunde = 10-12s) zerfällt. Solche Zwei-Phononen-Kohärenzen sind äußerst wichtig in dem neunen Forschungsgebiet der sogenannten Quanten-Phononik. Dort werden nicht-klassische Atombewegungen wie etwa "gequetschte" oder "verschränkte" Phononen untersucht.

In der neuesten Ausgabe der Fachzeitschrift Physical Review Letters haben Forscher des Max-Born-Instituts in Berlin die neue Methode der Zwei-Dimensionalen (2D) Terahertz-Spektroskopie eingesetzt um nicht-klassische Zwei-Phononen-Kohärenzen mit großen räumlichen Amplituden zu erzeugen und nachzuweisen. In den Experimenten wechselwirkt eine Sequenz von drei phasengekoppelten THz-Impulsen mit einem 70-μm dicken Kristall des Halbleiters Indiumantimonid (InSb). Das elektrische Feld, das die bewegten Atome abstrahlen, dient als eine Sonde für die Atombewegung in Echtzeit. Ein zwei-dimensionales Abrasterverfahren (ein sogenannter 2D-scan), bei dem die zeitliche Verzögerung zwischen den drei THz-Impulsen variiert wird, zeigte ausgeprägte Zwei-Phononen-Signale und konnte deren Zeitstruktur aufdecken [Abb. 1]. Eine detaillierte theoretische Analyse brachte die Einsicht, dass nichtlineare Vielfach-Wechselwirkungen von allen drei THz-Impulsen nötig sind um solche starken Zwei-Phonen-Kohärenzen anzuregen.

Die neue experimentelle Methode erlaubte zum ersten Mal Zwei-Phononen-Kohärenzen großer Amplitude in einem Kristall nachzuweisen. Alle experimentellen Beobachtungen sind in exzellenter Übereinstimmung mit der Quantentheorie. Dieser neue Typus von 2D-THz-Spektroskopie weist den Weg zur Erzeugung, Analyse und Manipulation von anderen Niedrig-Energie-Anregungen in Festkörpern, wie z.B. Magnonen oder optischen Übergängen in Exzitonen oder an Störstellen gebundenen Elektronen.

WoeIsBn

Abb. 1 (Klick für vergrößerte Ansicht)

Abb. 1: Experimentell gemessene Kurven: (a) Zwei-dimensionaler (2D) scan der Summe der elektrischen Felder E(τ,t) der drei treibenden THz-Impulse A, B und C als Funktion der Kohärenzzeit τ und der Realzeit t. Das Konturdiagramm ist rot gefärbt für positive elektrische Felder und blau gefärbt für negative elektrische Felder. (b) 2D scan des von der Zwei-Phononen-Kohärenz im Halbleiter Indiumantimonid nichtlinear abgestrahlten, elektrischen Feldes ENL(τ,t) Die orange Linie zeigt die Mitte von THz-Impuls A. (c) Elektrische Feldtransiente ENL(0,t) gemessen für Kohärenzzeit τ=0.
Movie Movie: Veranschaulichung von nicht-klassischen Quantenkohärenzen in Materie. Die zwei Parabeln (scharze Kurven) zeigen die Potentialoberflächen von harmonischen Oszillatoren, die die Schwingungen von Atomen in einem Kristall um ihre Gleichgewichtslage repräsentieren - die sogenannten Phononen. Die blauen Kurven zeigen die Aufenthaltswahrscheinlichkeit der Atome an unterschiedlichen Orten im thermischen Gleichgewicht. Die quantenmechanische Unschärferelationen erzwingt eine endliche räumliche Ausdehnung solcher Verteilungsfunktionen. Die roten Kurven zeigen die zeitabhängige Aufenthaltswahrscheinlichkeit von verschiedenen kohärent schwingender Quantenzustände in der Materie. Links sieht man eine Ein-Phonon-Kohärenz, bei der die quantenmechanische Bewegung der Atome stark der klassischen Bewegung eines Pendels ähnelt (türkise Kugel). Diese bewegt sich während der Oszillation entweder von links nach rechts oder von rechts nach links. Auf der rechten Seite sehen wir die zeitabhängige Aufenthaltswahrscheinlichkeit einer Zwei-Phononen-Kohärenz. Die Quantenmechanik erlaubt eine nicht-klassische Bewegung, bei der ein Atom gleichzeitig an zwei unterschiedlichen Orten verweilen kann. Die Geschwindigkeit der Atome verhält sich auch nicht-klassisch, d.h., es kann zur gleichen Zeit von links nach rechts und von rechts nach links schwingen. Bei einem perfekten harmonischen Oszillator würden die Teilchenströme dieser beiden Anteile sich exakt auslöschen. Daher muss eine kleine Anharmonizität vorliegen, damit man die Emission eines kohärenten elektrischen Feldes wie in Abbildung 1(c) beobachten kann.

Originalpublikation: Physical Review Letters 116, 177401
Two-Phonon Quantum Coherences in Indium Antimonide Studied by Nonlinear Two-Dimensional Terahertz Spectroscopy
Carmine Somma, Giulia Folpini, Klaus Reimann, Michael Woerner, and Thomas Elsaesser

Ein weiterer ausführlicher Artikel zur experimentellen Technik ist ebenfalls erschienen in:

The Journal of Chemical Physics 144, 184202
Phase-resolved two-dimensional terahertz spectroscopy including off-resonant interactions beyond the χ(3) limit
Carmine Somma, Giulia Folpini, Klaus Reimann, Michael Woerner, and Thomas Elsaesser

Kontakt

Prof. Klaus Reimann Tel. 030 6392 1476
Dr. Michael Wörner Tel. 030 6392 1470
Prof. Dr. Thomas Elsässer Tel. 030 6392 1400

 
     
 


Ultraschnelle Photoelektronenspektroskopie enthüllt Ringen zwischen verschiedenen Autoionisationskanälen

22. April 2016

Mit Hilfe von zeit-, energie- und winkelaufgelöster Photoelektronenspektroskopie gelang es Forschern vom Max-Born-Institut in Berlin, in Kooperation mit Kollegen aus Mailand und Padua, Schnappschüsse von gekoppelten Rydbergorbitalen während ultraschneller Autoionization aufzunehmen.

Elektronische Autoionization ist ein Prozess bei dem die Bewegung von mehreren angeregten Elektronen in einem Atom oder Molekül mit Verzögerung zur Emission eines einzelnen Elektrons führt. Trotz einer langen Forschungshistorie birgt die theoretische Beschreibung dieses Prozesses auch heute noch Schwierigkeiten. Dies trifft insbesondere auf den Fall von energetisch überlappenden autoionisierenden Resonanzen zu. Die Schwierigkeiten sind fundamentaler Natur, denn ihr Ursprung liegt in den fundamentalen Problemen der Beschreibung eines dynamischen Prozesses im Energieraum. Den Forschern vom Max-Born-Institut gelang es nun durch neue technische Entwicklung im Bereich von ultrakurzen XUV-Pulsen erstmals diesen ultraschnellen dynamischen Prozess auch direkt im Zeitraum nachzuweisen.

In der neuen Publikation (M. Eckstein et al, Phys. Rev. Lett. 116, 163003 (2016)), wird ein neu konstruierter zeitverzögerungskompensierender Monochromator genutzt, der es ermöglicht eine einzelne autoionisierende Resonanz in Stickstoffmolekülen selektiv durch einen XUV-Puls anzuregen. Die Dynamik wird daraufhin durch Ionization des Moleküls mit einem zweiten IR-Puls innerhalb eines Pump-Probe Experiment abgebildet. Dies geschieht auf einer Zeitskala unterhalb von 15 fs. Die generierten Photoelektronen werden mit einem "Velocity Map Imaging" Spektrometer abgebildet, das neben der kinetischen Energie der Elektronen auch die Winkelverteilung der Elektronen misst. Das Experiment zeigte, dass die Winkelverteilung der Photoelektronen sich während der Autoionisation ändert (Abb. 1). Direkt nach der Anregung der Resonanz, ist die Winkelverteilung relativ isotrop. Mit größerer Pump-Probe Verzögerung kann dann beobachten werden, dass die Elektronen hauptsächlich in Richtung der Laserpolarisation emittiert werden. Diese Beobachtung kann nur zu Stande kommen wenn zwei elektronische Zustände angeregt werden. Eine mögliche Existenz von solchen energetisch überlappenden Zuständen in Stickstoff wurde bereits vor über 30 Jahren theoretisch vorausgesagt und nun zum ersten Mal auch experimentell beobachtet. Im Experiment werden verschiedene Zerfallszeiten für die energetisch überlappenden angeregten Zustände beobachtet.

Zwei überlappende elektronische Zustände, die jeweils eine kurze und längere Lebenszeit haben, können theoretisch durch Interferenzstabilisation erklärt werden. Dies ist ein Phänomen, das ebenfalls bei Atomen auftritt, die sich innerhalb eines elektrischen Starkfeldes befinden. Interferenzstabilisation tritt auf, wenn eine quantenmechanische Interferenz zwischen verschiedenen Autoionisationszuständen zur Veränderung der Dauer der einzelnen Ionisationskanäle führt. Dabei wird die Dauer des einen Kanals verkürzt während sich die andere verlängert. Weitergehende Experimente und verbesserte theoretische Beschreibung sollen ergründen inwieweit die hier im Experiment beobachten Phänomene von genereller Natur sind und damit von hoher Bedeutung für das allgemeine Verständnis von Autoionisation in Molekülen wären.

Originalpublikation: Physical Review Letters 116, 163003
Direct Imaging of Transient Fano Resonances in N2 Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy

Vollständige Zitation:
Martin Eckstein, Chung-Hsin Yang, Fabio Frassetto, Luca Poletto, Giuseppe Sansone, Marc J. J. Vrakking, Oleg Kornilov
"Direct Imaging of Transient Fano Resonances in N2 Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy"

DOI: 10.1103/PhysRevLett.116.163003

Kontakt

Dr. Oleg Kornilov, Tel. 030 6392 1246

betaRyIRKornilov

Abb. 1: Winkelverteilung von Photoelektronen generiert durch die Ionisation einer autoionisierenden Resonanz in molekularen Stickstoff durch einen schwachen IR-Puls. Die eingebetteten Fenster zeigen die Winkelverteilung für verschiedene Zeitverzögerungen. Die grüne und blaue Kurve zeigen die Zeitabhängigkeit der Asymmetrieparameter der Winkelverteilung. Die Winkelverteilung wird hierbei durch Legendrepolynome zweiter und vierter Ordnung beschrieben.

 

Abb. 1 (Klick für vergrößerte Ansicht)  
 
     
 


Thomas Elsässer erhält den Ellis R. Lippincott Award

8. März 2016

Thomas Elsässer, Direktor am Max-Born-Institut und Professor für Experimentalphysik an der Humboldt Universität zu Berlin, erhält den Ellis R. Lippincott Award 2016 in Anerkennung seiner "bahnbrechenden Beiträge zum Verständnis kohärenter und inkohärenter Schwingungsdynamik von Wasserstoffbrücken in Flüssigkeiten und Biomolekülen".

Damit werden seine Pionierarbeiten zur Aufklärung molekularer Prozesse und Wechselwirkungen in Wasser, Säuredimeren, Nukleinbasenpaaren und Biomolekülen in wässriger Umgebung, etwa DNA und Phospholipiden gewürdigt. Diese Untersuchungen beruhen auf Methoden der nichtlinearen Infrarotspektroskopie im Piko- und Femtosekundenzeitbereich.
Der international angesehene Ellis R. Lippincott Award wird seit 1975 gemeinsam von der Optical Society of America, der Coblentz Society und der Society for Applied Spectroscopy an Forscher vergeben, die bedeutende Beiträge zur Schwingungsspektroskopie geleistet und gleichzeitig methodische Innovationen demonstriert haben. Die Übergabe des Preises findet im Herbst 2016 in den USA statt.

Link zur Pressemitteilung der Optical Society of America: Prestigious Awards and Medals 2016

Kontakt

Prof. Dr. Thomas Elsässer Tel. 030 6392 1400

 
     
 


Verstärkung von Schallwellen bei extremen Frequenzen

18. Februar 2016

Ein elektrischer Strom durch eine Halbleiter-Nanostruktur verstärkt Schallwellen bei extrem hohen Frequenzen. Diese Methode ermöglicht neuartige, sehr kompakte Quellen von Ultraschall, die als Diagnosewerkzeug für das Abbilden von Werkstoffen und biologischen Strukturen mit sehr hoher räumlicher Auflösung dienen können

Ultraschall besteht aus akustischen Wellen mit einer Frequenz weit über der Grenze, die von Menschen gehört werden kann. Ultraschall im Megahertz-Bereich (1 MHz = 106 Hz = 1 Million Schwingungen pro Sekunde) findet breite Anwendung in der Sonographie, z. B. für die medizinische Bildgebung der Organe im Körper und für die zerstörungsfreie Prüfung von Materialien. Die räumliche Auflösung des Bildes ist begrenzt durch die Wellenlänge des Ultraschalls. Um Objekte im Nanobereich (1 Nanometer = 10-9 m = 1 milliardster Teil eines Meters) abbilden zu können, sind Schallwellen mit einer Frequenz von mehreren hundert Gigahertz (1 Gigahertz (GHz) = 1000 MHz) erforderlich. Um solche Wellen als Diagnosewerkzeug verwenden zu können, müssen neue Quellen entwickelt werden, die eine ausreichende Schallintensität liefern.

In einer kürzlich erschienenen Veröffentlichung (K. Shinokita et al., Phys. Rev. Lett. 116, 075504 (2016)), haben Forscher aus dem Max-Born-Institut in Berlin zusammen mit Kollegen aus dem Paul-Drude-Institut, Berlin und der École Normale Supérieure, Paris, eine neue Methode für die Verstärkung solch hochfrequenter Schallwellen gezeigt. In einer speziell entwickelten Halbleiter-Struktur, die aus einer Folge von Nanoschichten besteht, werden Schallwellen mit einer Frequenz von 400 GHz mit kurzen optischen Impulsen aus einem Laser erzeugt und nachgewiesen. Der Schall wird durch Wechselwirkung mit einem elektrischen Strom verstärkt, der durch den Halbleiter in der gleichen Richtung wie die Schallwellen fließt. Diese Verstärkung basiert auf einen Prozess namens "SASER" (Sound Amplification by Stimulated Emission of Radiation), vollkommen analog zur Verstärkung des Lichtes in einem Laser (Light Amplification by Stimulated Emission of Radiation). Die Schallwelle regt Elektronen, die sich mit einer Geschwindigkeit höher als die Schallgeschwindigkeit bewegen, dazu an, von einem Zustand hoher Energie in einen Zustand niedrigerer Energie zu gehen und dadurch die Schallwelle stärker zu machen. Um eine Netto-Verstärkung zu erzielen, ist es notwendig, dass es mehr Elektronen in dem Zustand hoher Energie als in dem niedriger Energie gibt. Auf diese Weise wird eine Schallwelle mit einer Frequenz von 400 GHz um den Faktor zwei verstärkt.

Die bisherige Arbeit demonstriert erstmals dieses Prinzip der Schallverstärkung. Um hiermit eine nutzbare Quelle für Hochfrequenz-Schallwellen zu bauen, ist es notwendig, die Verstärkung weiter zu steigern, was durch Verbesserung der Struktur und vor allem durch eine bessere Kühlung des Halbleiters möglich sein dürfte. Sobald solche Quellen verfügbar sind, kann Sonographie mit einer Ortsauflösung im Bereich der Größe von Viren betrieben werden, also auf einer Längenskala viel kürzer als die Wellenlänge des sichtbaren Lichts.

Reimann

Abb. 1 (Klick für vergrößerte Ansicht)

Abb. 1: Änderungen der Reflexion als Funktion der Verzögerungszeit nach dem Pump-Puls. Die beobachteten Oszillationen sind proportional zur momentanen Amplitude der Schallwelle. Die blaue Kurve zeigt die Ergebnisse ohne Strom durch das Übergitter, die rote Kurve mit einem Strom von 1 A. Die Amplitude mit Strom ist immer größer als die ohne Strom. Die Verstärkung (das Verhältnis zwischen den roten und blauen Kurven) ist am deutlichsten bei Verzögerungszeiten über 300 ps (1 ps ist eine Pikosekunde, ein Millionstel einer Millionstel Sekunde), da die Verstärkung Zeit braucht.
Movie Film: Die untersuchte Halbleiterstruktur besteht aus abwechselnden Schichten von Galliumarsenid und Aluminium-Gallium-Arsenid (hier in gelb und rot dargestellt). Ein kurzer Laserpuls (Pfeil von links) erzeugt eine akustische Welle, hier zu sehen als periodische Änderung der Schichtdicken. Während die Amplitude der akustischen Welle mit der Zeit zunimmt, wenn ein elektrischer Strom (bewegenden Elektronen, dargestellt als blaue Punkte) fließt, bleibt sie ohne Strom konstant (oberer Teil).

Originalpublikation: Physical Review Letters 116, 075504
Strong Amplification of Coherent Acoustic Phonons by Intraminiband Currents in a Semiconductor Superlattice

Keisuke Shinokita, Klaus Reimann, Michael Woerner, Thomas Elsaesser, Rudolf Hey, Christos Flytzanis

Dieser Artikel wurde ausgewählt als Vorschlag des Herausgebers, siehe: Pumping up the sound

Kontakt

Prof. Klaus Reimann Tel. 030 6392 1476
Dr. Michael Wörner Tel. 030 6392 1470
Prof. Dr. Thomas Elsässer Tel. 030 6392 1400

 
     
 


Unsichtbare Lichtblitze entfachen Nano-Feuerwerk

19. Januar 2016

Ein Team von Wissenschaftlern des Max-Born-Institutes Berlin und der Universität Rostock hat einen neuartigen Weg gefunden, transparente Nanoteilchen schlagartig undurchsichtig zu machen und mit Laserlicht blitzschnell aufzuheizen. Ihre Ergebnisse könnten ungeahnte Möglichkeiten für Medizin und Technik eröffnen.

Intensive Lichtpulse können transparentes Material in ein Plasma verwandeln, das die Lichtenergie anschließend sehr effizient einfängt. Die Wissenschaftler aus Berlin und Rostock konnten diesen Prozess nun extrem präzise kontrollieren. Sie verwendeten dazu einen Trick, der medizinische Methoden und die Herstellung von Nanomaterialien wesentlich vereinfachen könnte. Das Zusammentreffen von Licht und Materie wurde von einem Team von Physikern vom Max-Born-Institut für nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin und vom Institut f├╝r Physik der Universität Rostock erforscht.

Die Wissenschaftler untersuchten die Wechselwirkung intensiver nah-infraroter (NIR) Laserblitze mit winzigen, nur wenige Nanometer-großen Teilchen aus einigen Tausend Argonatomen - so genannten Atomclustern. Das sichtbare NIR Licht allein kann ein Plasma nur dann erzeugen, wenn seine elektromagnetischen Lichtwellen so stark sind, dass es einzelne Atome in Elektronen und Ionen zerreißt (ionisiert). Die Forscher konnten diese Zündungsschwelle austricksen, indem sie die Cluster mit einem zweiten, deutlich schwächeren und für das menschliche Auge unsichtbaren Femtosekunden-Lichtblitz im extrem-ultravioleten Spektralbereich bestrahlten (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde). Mit diesem Trick konnten die Forscher den Energieeinfang auch für unerwartet schwaches sichtbares Laserlicht "anschalten" und beobachteten ein Nano-Feuerwerk, bei dem Elektronen, Ionen und farbiges Fluoreszenzlicht von den Clustern in verschiedene Richtungen ausgesandt wurden (Abb. 1). Ihre Ergebnisse eröffnen neuartige Möglichkeiten für Grundlagenforschung und Anwendung und wurden in der aktuellen Ausgabe der renommierten Fachzeitschrift Physical Review Letters veröffentlicht.

Die Experimente wurden am Max-Born-Institut an einer 12 m langen Apparatur für die Erzeugung Hoher-Harmonischer (HH) durchgeführt. "Die Beobachtung, dass Argoncluster selbst bei moderater Lichtintensität stark ionisiert werden war sehr überraschend" (Abb. 2), erklärt Dr. Bernd Schütte vom MBI, der das Experimente konzipiert und durchgeführt hat. "Obwohl der zusätzliche XUV Lichtblitz sehr schwach ist, ist seine Anwesenheit entscheidend: ohne den XUV Zündungspuls blieben die Nanopartikel unverändert und transparent für das sichtbare Licht." Wissenschaftler um Prof. Thomas Fennel von der Universität Rostock konnten das Geheimnis der Synergie der beiden Lichtblitze durch numerische Computersimulationen lüften. Sie fanden heraus, dass die Bereitstellung einiger weniger Elektronen genügt, um einen Prozess ähnlich zu einer Schneelawine im Gebirge in Gang zu setzen. Diese "Keimelektronen" werden durch die ionisierende XUV Strahlung erzeugt, anschließend durch das sichtbare Licht aufgeheizt und schlagen weitere Elektronen aus benachbarten Atomen heraus. "Bei dieser Lawine wächst die Zahl freier Elektronen in dem Nanopartikel exponentiell", erklärt Prof. Fennel. "Letztlich heizen sich die Partikel so stark auf, dass hochgeladene Ionen erzeugt werden können."

Das neuartige Konzept der mit XUV Licht gezündeten Ionisationslawine macht es möglich, die Starkfeldionisation von Nanoteilchen und möglicherweise auch Feststoffen räumlich und zeitlich extrem präzise zu kontrollieren. Dadurch sollte es möglich sein, die Ionisation von Nanoteilchen auf der Zeitspanne von Attosekunden zu beobachten - einer unvorstellbar kurzen Zeit. Eine Attosekunde verhält sich zu einer Sekunde, wie eine Sekunde zum Alter des Universums. Die Wissenschaftler erwarten, dass die Zündungsmethode bei vielen transparenten Materialien wie Glas oder Plastik eingesetzt werden kann. Das macht dieses Konzept für die Herstellung von Nanostrukturen besonders interessant. Der Vorteil ergibt sich aus den Eigenschaften der XUV Lichtblitze, die auf eine viel kleinere Fläche fokussiert werden können und so eine höhere Präzision erlauben. Gleichzeitig erhöht sich im Vergleich zu gängigen Verfahren die Effizienz, da sichtbare NIR Pulse mit viel geringerer Intensität ausreichend sind, um das Material stark aufzuheizen. Daraus könnten zukünftig neue Methoden für Nanolithografie und Nanomedizin entstehen.

Originalpublikation: Physical Review Letters 116, 033001
Ionization avalanching in clusters ignited by extreme-ultraviolet driven seed electrons

Vollständige Zitation:
Bernd Schütte, Mathias Arbeiter, Alexandre Mermillod-Blondin, Marc J. J. Vrakking, Arnaud Rouzée, Thomas Fennel
"Ionization Avalanching in Clusters Ignited by Extreme-Ultraviolet Driven Seed Electrons"

DOI: 10.1103/PhysRevLett.116.033001

Kontakt

Dr. Bernd Schütte

Schuette

Abb. 1: Nano-Feuerwerk in einem Argon-Nanopartikel wird von einem unsichtbaren XUV-Laserpuls mit moderater Intensität entzündet. Ein darauffolgender sichtbarer Laserpuls heizt den Nanopartikel sehr effizient auf, was zu seiner Explosion führt. Elektronen und Ionen bewegen sich in unterschiedliche Richtungen und senden Floureszenzlicht in verschiedenen Farben aus. Ohne Zündung durch den XUV-Puls bliebe der Nanopartikel intakt.

 

Abb. 1 (Klick für vergrößerte Ansicht)  
Schuette

Abb. 2: Ionen-Ladungsspektren gemessen in Argon-Nanopartikeln. Mit dem XUV-Zündungspuls allein werden nur einige wenige einfach geladene Ionen beobachtet (schwarzes Spektrum). Durch einen zusätzlichen NIR-Heizungspuls werden hochgeladene Ionen bis zu Ar8+ erzeugt. Der Heizungspuls allein erzeugt keine Ionen.

Abb. 2 (Klick für vergrößerte Ansicht)  
 
     
Weiter zurückliegende Information finden Sie im Archiv ... hier.